On irregular functionals of SDEs and the Euler scheme

AbstractWe prove a sharp upper bound for the error $\mathbb {E}|g(X)-g(\hat{X})|^{p}$ in terms of moments of $X-\hat{X}$ , where X and $\hat{X}$ are random variables and the function g is a function of bounded variation. We apply the results to the approximation of a solution to a stochastic differential equation at time T by the Euler scheme, and show that the approximation of the payoff of the binary option has asymptotically sharp strong convergence rate 1/2. This has consequences for multilevel Monte Carlo methods.

[1]  Thomas Müller-Gronbach,et al.  Strong approximation of systems of stochastic differential equations , 2002 .

[2]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[3]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[4]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[5]  A. Kebaier,et al.  Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing , 2005, math/0602529.

[6]  W. Rudin Real and complex analysis , 1968 .

[7]  Klaus Ritter,et al.  Linear vs Standard Information for Scalar Stochastic Differential Equations , 2002, J. Complex..

[8]  Klaus Ritter,et al.  The Optimal Discretization of Stochastic Differential Equations , 2001, J. Complex..

[9]  István Gyöngy,et al.  A Note on Euler's Approximations , 1998, Potential Analysis.

[10]  Desmond J. Higham,et al.  Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff , 2009, Finance Stochastics.

[11]  Julien Guyon Euler scheme and tempered distributions , 2006, 0707.1243.

[12]  I. Gyöngy A note on Euler's Approximations , 1998 .

[13]  Otto-von-Guericke Optimal Pointwise Approximation of Sdes Based on Brownian Motion at Discrete Points , 2005 .

[14]  Rainer Avikainen,et al.  Convergence Rates for Approximations of Functionals of SDEs , 2007, 0712.3635.

[15]  Thomas Müller-Gronbach,et al.  On the global error of Itô-Taylor schemes for strong approximation of scalar stochastic differential equations , 2004, J. Complex..

[16]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[17]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[18]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[19]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[20]  C. Bennett,et al.  Interpolation of operators , 1987 .

[21]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[22]  Steven M. Melimis Numerical methods for stochastic processes , 1978 .

[23]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[24]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[25]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[26]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[27]  P. Kloeden,et al.  Numerical Solutions of Stochastic Differential Equations , 1995 .

[28]  T. Müller-Gronbach The optimal uniform approximation of systems of stochastic differential equations , 2002 .

[29]  D. Nualart,et al.  Estimation of Densities and Applications , 1998 .

[30]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .