暂无分享,去创建一个
[1] Bart Goethals,et al. Tiling Databases , 2004, Discovery Science.
[2] Luc De Raedt,et al. Itemset mining: A constraint programming perspective , 2011, Artif. Intell..
[3] Jean-François Boulicaut,et al. A Survey on Condensed Representations for Frequent Sets , 2004, Constraint-Based Mining and Inductive Databases.
[4] Jon M. Kleinberg,et al. Clustering categorical data: an approach based on dynamical systems , 2000, The VLDB Journal.
[5] Arnaud Giacometti,et al. A Framework for Pattern-Based Global Models , 2009, IDEAL.
[6] Luc De Raedt,et al. Constraint Programming for Data Mining and Machine Learning , 2010, AAAI.
[7] Douglas H. Fisher,et al. Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.
[8] Albrecht Zimmermann,et al. The Chosen Few: On Identifying Valuable Patterns , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[9] Arno J. Knobbe,et al. Pattern Teams , 2006, PKDD.
[10] Einoshin Suzuki,et al. Undirected Discovery of Interesting Exception Rules , 2002, Int. J. Pattern Recognit. Artif. Intell..
[11] Luc De Raedt,et al. Constraint programming for itemset mining , 2008, KDD.
[12] Patrice Boizumault,et al. Constraint Programming for Mining n-ary Patterns , 2010, CP.
[13] Saso Dzeroski,et al. Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery , 2004, Local Pattern Detection.
[14] Howard J. Hamilton,et al. Interestingness measures for data mining: A survey , 2006, CSUR.
[15] Patrice Boizumault,et al. Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery , 2009 .
[16] Laks V. S. Lakshmanan,et al. Exploratory mining and pruning optimizations of constrained associations rules , 1998, SIGMOD '98.
[17] Luc De Raedt,et al. Constraint-Based Pattern Set Mining , 2007, SDM.
[18] Patrice Boizumault,et al. Combining CSP and Constraint-Based Mining for Pattern Discovery , 2010, ICCSA.
[19] Pavel Berkhin,et al. A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.