The complexity of multiple-precision arithmetic

In studying the complexity of iterative processes it is usually assumed that the arithmetic operations of addition, multiplication, and division can be performed in certain constant times. This assumption is invalid if the precision required increases as the computation proceeds. We give upper and lower bounds on the number of single-precision operations required to perform various multiple-precision operations, and deduce some interesting consequences concerning the relative efficiencies of methods for solving nonlinear equations using variable-length multiple-precision arithmetic. A postscript describes more recent developments.

[1]  Richard P. Brent,et al.  The Computational Complexity of Iterative Methods for Systems of Nonlinear Equations , 1972, Complexity of Computer Computations.

[2]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[3]  Michel Cosnard,et al.  Numerical Solution of Nonlinear Equations , 1979, TOMS.

[4]  Joseph F. Traub,et al.  Computational Complexity of Iterative Processes , 1972, SIAM J. Comput..

[5]  R. Brent Error analysis of algorithms for matrix multiplication and triangular decomposition using Winograd's identity , 1970 .

[6]  Shmuel Winograd,et al.  On the Time Required to Perform Addition , 1965, JACM.

[7]  Jacques Morgenstern,et al.  The Linear Complexity of Computation , 1975, JACM.

[8]  H. T. Kung,et al.  Optimal Order of One-Point and Multipoint Iteration , 1974, JACM.

[9]  R. Brent The complexity of multiple-precision arithmetic , 2010, ArXiv.

[10]  A. C. Hindmarsh,et al.  Optimality in a Class of Rootfinding Algorithms , 1972 .

[11]  Shmuel Winograd,et al.  On the Time Required to Perform Multiplication , 1967, JACM.

[12]  Joseph F. Traub,et al.  Numerical mathematics and computer science , 1972, CACM.

[13]  J. Rissanen,et al.  On optimum root-finding algorithms , 1971 .

[14]  Anatolij A. Karatsuba,et al.  Multiplication of Multidigit Numbers on Automata , 1963 .

[15]  Joseph F. Traub,et al.  An introduction to some current research in numerical computational complexity , 1973 .

[16]  H. T. Kung,et al.  Computational Complexity of One-Point and Multipoint Iteration, , 1973 .

[17]  Richard P. Brent,et al.  The Complexity of computational problem solving , 1976 .

[18]  Richard P. Brent,et al.  Optimal iterative processes for root-finding , 1972 .

[19]  Michael S. Paterson,et al.  Efficient Iterations for Algebraic Numbers , 1972, Complexity of Computer Computations.

[20]  Daniel Shanks,et al.  Calculation of π to 100,000 Decimals , 1962 .

[21]  H. T. Kung A Bound on the Multiplicative Efficiency of Iteration , 1973, J. Comput. Syst. Sci..

[22]  R. P. Brent,et al.  On the Precision Attainable with Various Floating-Point Number Systems , 1972, IEEE Transactions on Computers.

[23]  A. Ostrowski Solution of equations in Euclidean and Banach spaces , 1973 .

[24]  Richard P. Brent,et al.  Multiple-precision zero-finding methods and the complexity of elementary function evaluation , 1975, ArXiv.

[25]  H. T. Kung,et al.  Optimal order and efficiency for iterations with two evaluations , 1976 .

[26]  Joseph F. Traub,et al.  Theory of optimal algorithms , 1973 .

[27]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[28]  H. T. Rung THE COMPUTATIONAL COMPLEXITY OF ALGEBRAIC NUMBERS , 2011 .

[29]  Joseph F. Traub,et al.  Optimal Iterative Processes: Theorems and Conjectures , 1971, IFIP Congress.

[30]  Martin H. Schultz,et al.  The Computational Complexity of Elliptic Partial Differential Equations , 1972, Complexity of Computer Computations.

[31]  John E. Hopcroft,et al.  Complexity of Computer Computations , 1974, IFIP Congress.

[32]  Henryk Wozniakowski,et al.  Maximal Stationary Iterative Methods for the Solution of Operator Equations , 1974 .

[33]  R. Brent Some Efficient Algorithms for Solving Systems of Nonlinear Equations , 1973 .

[34]  Richard P. Brent,et al.  Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.

[35]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[36]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[37]  H. Wozniakowski,et al.  Generalized Information and Maximal Order of Iteration for Operator Equations , 1975 .