A Bayesian approach to the ecosystem inverse problem

This study investigates a probabilistic approach for the inverse problem associated with blending time-dependent ecosystem models and observations. The goal is to combine prior information, in the form of ecological dynamics and substantive knowledge about uncertain parameters, with available measurements. Posterior estimates of both the time-varying ecological state variables and the model parameters are obtained, along with their uncertainty. Ecological models of interacting populations are considered in the context of a nonlinear, non-Gaussian state space model. This comprises a nonlinear stochastic difference equation for the ecological dynamics, and an observation equation which relates the model state to the measurements. Complex error processes are readily incorporated. The posterior probability density function provides a complete solution to the inverse problem. Bayes’ theorem allows one to obtain this posterior density through synthesis of the prior information and the observations. To illustrate this Bayesian inverse method, these ideas are applied to a simple ecosystem box model concerned with predicting the seasonal co-evolution of a population of grazing shellfish and its two food sources: plankton and detritus. Observations of shellfish biomass over time are available. Lognormal system noise was incorporated into the ecosystem equations at all time steps. Ingestion and respiration parameters for shellfish growth are considered as uncertain quantities described by beta distributions. Stochastic simulation was carried out and provided predictions of the model state with uncertainty estimates. The Bayesian inverse method was then used to assimilate the additional information contained in the observations. Posterior probability density functions for the parameters and time-varying ecological state were computed using Markov Chain Monte Carlo methods. The ecological dynamics spread the measurement information to all state variables and parameters, even those not directly observed. Probabilistic state estimates are refined in comparison to those from the stochastic simulation. It is concluded that this Bayesian approach appears promising as a framework for ecosystem inverse problems, but requires careful control of the dimensionality for practical applications.

[1]  John J. Cullen,et al.  Optical detection and assessment of algal blooms , 1997 .

[2]  W. Thacker,et al.  Fitting dynamics to data , 1988 .

[3]  P. Cranford,et al.  Seasonal variation in food utilization by the suspension-feeding bivalve molluscs Mytilus edulis and Placopecten magellanicus , 1999 .

[4]  S. D. Cooper,et al.  PRIMARY-PRODUCTIVITY GRADIENTS AND SHORT-TERM POPULATION DYNAMICS IN OPEN SYSTEMS , 1997 .

[5]  Charles S. Yentsch,et al.  An imaging-in-flow system for automated analysis of marine microplankton , 1998 .

[6]  V. A. Ryabchenko,et al.  Chaotic behaviour of an ocean ecosystem model under seasonal external forcing , 1997 .

[7]  J. Vallino Improving marine ecosystem models: Use of data assimilation and mesocosm experiments , 2000 .

[8]  A. Bennett Inverse Methods in Physical Oceanography , 1992 .

[9]  Danielle J. Marceau,et al.  Modeling complex ecological systems: an introduction , 2002 .

[10]  M. Dowd,et al.  Perspectives on Field Studies and Related Biological Models of Bivalve Growth and Carrying Capacity , 1993 .

[11]  S. Jørgensen,et al.  Movement rules for individual-based models of stream fish , 1999 .

[12]  John H. Steele,et al.  A Simple Plankton Model , 1981, The American Naturalist.

[13]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[14]  Kenneth H. Reckhow,et al.  Characterization of parameters in mechanistic models: A case study of a PCB fate and transport model , 1997 .

[15]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[16]  L. Mark Berliner,et al.  Subsampling the Gibbs Sampler , 1994 .

[17]  C. Bacher,et al.  Assessing the production and the impact of cultivated oysters in the Thau lagoon (Mediterranee, France) with a population dynamics model , 2001 .

[18]  James D. Annan,et al.  Modelling under uncertainty: Monte Carlo methods for temporally varying parameters , 2001 .

[19]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[20]  M. Dowd On predicting the growth of cultured bivalves , 1997 .

[21]  A. Robinson,et al.  The global coastal ocean : processes and methods , 1998 .

[22]  B. Beliaeff,et al.  Dynamic linear Bayesian models in phytoplankton ecology , 1997 .

[23]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[24]  M. West,et al.  Dynamic Generalized Linear Models and Bayesian Forecasting: Rejoinder , 1985 .

[25]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[26]  Glenn R. Flierl,et al.  Behavior of a simple plankton model with food-level acclimation by herbivores , 1986 .

[27]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  G. Evensen,et al.  A weak constraint inverse for a zero-dimensional marine ecosystem model , 2001 .

[29]  A. Vaquer,et al.  Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oysters farming and inputs from the watershed , 2000 .

[30]  Peter Reichert,et al.  On the usefulness of overparameterized ecological models , 1997 .

[31]  G. Dévai,et al.  Modelling zooplankton population dynamics with the extended Kalman filtering technique , 1998 .

[32]  David W. Dilks,et al.  Development of Bayesian Monte Carlo techniques for water quality model uncertainty , 1992 .

[33]  Jun Yu,et al.  Bugs for a Bayesian Analysis of Stochastic Volatility Models , 2000 .

[34]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[35]  M. Kahru,et al.  Seasonal and nonseasonal variability of satellite‐derived chlorophyll and colored dissolved organic matter concentration in the California Current , 2001 .

[36]  Peter G. Challenor,et al.  A Markov chain Monte Carlo method for estimation and assimilation into models , 1997 .

[37]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[38]  Tom Aldenberg,et al.  Fitting the dynamic model PCLake to a multi-lake survey through Bayesian Statistics , 1995 .

[39]  Walter R. Gilks,et al.  BUGS - Bayesian inference Using Gibbs Sampling Version 0.50 , 1995 .

[40]  F. Page,et al.  Interannual variability in a plankton time series , 2003 .

[41]  P. Reichert,et al.  Biogeochemical model of Lake Zürich : sensitivity, identifiability and uncertainty analysis , 2001 .

[42]  M. N. Hill,et al.  The sea: ideas and observations on progress in the study of the seas , 1963 .

[43]  Bruce Smith,et al.  Oceanographic data assimilation and regression analysis , 2000 .

[44]  R. Nisbet,et al.  Dynamic Models of Growth and Reproduction of the Mussel Mytilus edulis L. , 1990 .

[45]  Mark E. Borsuk,et al.  On Monte Carlo methods for Bayesian inference , 2003 .

[46]  David Higdon,et al.  A Bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones , 2001 .

[47]  John T. Lehmann,et al.  Inverse model method for estimating assimilation by aquatic invertebrates , 2001, Aquatic Sciences.

[48]  G. Nolet Book Review: Inverse problem theory, methods for data fitting and model parameter estimation. Albert Tarantola, Elsevier, Amsterdam and New York, 1987, 630 pp., Dfl180.00/$80.00, ISBN 0 444 427651 , 1989 .

[49]  M. Pace,et al.  An Inverse Model Analysis of Planktonic Food Webs in Experimental Lakes , 1994 .

[50]  Sven Erik Jørgensen,et al.  Parameter estimation and calibration by use of exergy , 2001 .

[51]  Meyer,et al.  Bayesian reconstruction of chaotic dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[53]  P. Hodges,et al.  A COMPUTATIONAL METHOD FOR ESTIMATING DENSITIES OF NON‐GAUSSIAN NONSTATIONARY UNIVARIATE TIME SERIES , 1993 .

[54]  Russell B. Millar,et al.  BUGS in Bayesian stock assessments , 1999 .

[55]  G. Kitagawa A self-organizing state-space model , 1998 .

[56]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[57]  F. Vernberg,et al.  Bivalvia through reptilia , 1987 .

[58]  P. Reichert,et al.  A comparison of techniques for the estimation of model prediction uncertainty , 1999 .

[59]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[60]  A. Ménesguen,et al.  An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. , 1994 .

[61]  G Marion,et al.  Stochastic modelling of environmental variation for biological populations. , 2000, Theoretical population biology.

[62]  Russell B. Millar,et al.  Bayesian state-space modeling of age-structured data: fitting a model is just the beginning , 2000 .

[63]  E. Swift,et al.  Spatial and temporal distributions of acoustically estimated Zooplankton biomass near the Marine Light‐Mixed Layers station (59°30′N, 21°00′W) in the North Atlantic in May 1991 , 1995 .

[64]  C. Wunsch The Ocean Circulation Inverse Problem , 1996 .

[65]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[66]  G. Kitagawa Theory and Methods , 1998 .

[67]  M. West,et al.  Dynamic Generalized Linear Models and Bayesian Forecasting , 1985 .

[68]  Eileen E. Hofmann,et al.  A data assimilation technique applied to a predator-prey model , 1995 .

[69]  Andrew M. Edwards,et al.  Adding Detritus to a Nutrient–Phytoplankton–Zooplankton Model:A Dynamical-Systems Approach , 2001 .

[70]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[71]  Gianpiero Cossarini,et al.  Managing the rearing of Tapes philippinarum in the lagoon of Venice: a decision support system , 2001 .

[72]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[73]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[74]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .