Pseudospectral methods for Boussinesq-type equations in an annular domain with applications to mid-sized lakes

Abstract We present a numerical solution procedure for a two-dimensional Boussinesq-type shallow water model on annular domains using pseudospectral discretization methods, including practical implementation details such as spectral filtering to prevent aliasing-driven instabilities and efficient numerical linear algebra techniques. The numerical model's potential for predicting and simulating wave motions in mid-sized lakes is illustrated with three test cases: (1) wave diffraction around an island and near-shore focusing; (2) the formation, propagation and destruction of wave trains and solitary-like waves in rotating basins; and (3) the influence of bottom bathymetry on wave formation and propagation from a Kelvin-seiche.

[1]  William Thomson,et al.  1. On Gravitational Oscillations of Rotating Water , 1880 .

[2]  The square root depth wave equations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[4]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[5]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .

[6]  Jörg Imberger,et al.  Internal wave weather in a stratified lake , 1998 .

[7]  R. Stocker,et al.  Energy Partitioning and Horizontal Dispersion in a Stratified Rotating Lake , 2003 .

[8]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[9]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[10]  W. Melville,et al.  Geostrophic adjustment in a channel: nonlinear and dispersive effects , 1992, Journal of Fluid Mechanics.

[11]  Francis J. Poulin,et al.  On fully nonlinear, vertically trapped wave packets in a stratified fluid on the f-plane , 2009 .

[12]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[13]  Ethan J. Kubatko,et al.  A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations , 2009 .

[14]  Spencer J. Sherwin,et al.  Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations , 2006, J. Comput. Phys..

[15]  W. Alpers,et al.  Internal Waves in the Strait of Messina Studied by a Numerical Model and Synthetic Aperture Radar Images from the ERS 1/2 Satellites , 1997 .

[16]  P. Liu,et al.  A two-layer approach to wave modelling , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  K. Helfrich Decay and return of internal solitary waves with rotation , 2007 .

[18]  Spencer J. Sherwin,et al.  Discontinuous Galerkin Spectral/hp Element Modelling of Dispersive Shallow Water Systems , 2005, J. Sci. Comput..

[19]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[20]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[21]  Fu Yu,et al.  Comparing seven spectral methods for interpolation and for solving the Poisson equation in a disk: Zernike polynomials, Logan-Shepp ridge polynomials, Chebyshev-Fourier Series, cylindrical Robert functions, Bessel-Fourier expansions, square-to-disk conformal mapping and radial basis functions , 2011, J. Comput. Phys..

[22]  Kenji Shimizu,et al.  The evolution of internal waves in a rotating, stratified, circular basin and the influence of weakly nonlinear and nonhydrostatic accelerations , 2008 .

[23]  A. Wüest,et al.  SMALL-SCALE HYDRODYNAMICS IN LAKES , 2003 .

[24]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[25]  Ethan J. Kubatko,et al.  Implementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes , 2011 .