First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 ± 3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc2 = 3.8 ± 0.4 μas. Folding in a distance measurement of gives a black hole mass of . This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.

Daniel C. M. Palumbo | Chih-Wei L. Huang | Alexander W. Raymond | K. Souccar | L. Ho | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | S. Ikeda | J. Carlstrom | D. Michalik | A. Nadolski | D. James | P. Koch | L. Rezzolla | C. Kramer | K. Menten | R. Neri | P. Ho | L. Blackburn | J. Cordes | E. Ros | Sang-Sung Lee | M. Kino | S. Trippe | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | F. Schloerb | E. Fomalont | Jongsoo Kim | R. Narayan | Michael D. Johnson | S. Doeleman | J. Wardle | S. Chatterjee | L. Loinard | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | G. Bower | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | R. Lu | A. Broderick | M. Honma | T. Oyama | R. Primiani | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Gold | L. Vertatschitsch | J. Zensus | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | Ziyan Zhu | K. Toma | M. Sasada | D. Pesce | P. Tiede | H. Pu | L. Shao | A. Marscher | S. Jorstad | José L. Gómez | U. Pen | J. Mao | D. Bintley | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | D. Broguière | T. Bronzwaer | Chi-kwan Chan | Yongjun Chen | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | Roberto García | O. Gentaz | B. Georgiev | C. Goddi | M. Gu | K. Hada | Lei Huang | S. Issaoun | M. Janssen | B. Jeter | Wu Jiang | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | Yan-Rong Li | Zhiyuan Li | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | N. MacDonald | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | Masanori Nakamura | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | B. Ryan | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | S. Tsuda | N. Wex | R. Wharton | M. Wielgus | G. Wong | Qingwen Wu | Z. Younsi | F. Yuan | Ye-Fei Yuan | Shan-Shan Zhao | J. Farah | Z. Meyer-Zhao | H. Nishioka | N. Pradel | P. Yamaguchi | H. V. van Langevelde | J. Conway | M. De Laurentis | Michael Kramer | F. Özel | R. Rao | Zhiqiang Shen | I. V. van Bemmel | D. V. van Rossum | Jan Wagner | C. Kramer | J. Gómez | Z. Li 李 | D. Broguiere | Y. Chen 陈 | M. Gu 顾 | L. Ho 何 | Lei 磊 Huang 黄 | Wu 悟 Jiang 江 | R. Lu 路 | J. Mao 毛 | Z. Shen 沈 | Q. Wu 吴 | Y. Yuan 袁 | M. Nakamura | C. Goddi | Lijing Shao | J. Wagner | F. Yuan 袁 | G. Bower | Y. Li 李 | R. García | M. Kramer | A. Raymond | L. Huang 黄 | J. Gómez | David Ball | Shiro Ikeda | Aleksandar PopStefanija | Olivier Gentaz | Britton Jeter | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Ramprasad Rao | Arash Roshanineshat | I. van Bemmel | Daniel R. van Rossum | D. Hughes | Des Small | J. Davelaar | Luis C. 子山 Ho 何 | Ru-Sen 如森 Lu 路 | J. Wagner

[1]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[2]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[3]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[4]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[5]  L. Young,et al.  SPIRE Spectroscopy of Early-type Galaxies , 2019, The Astrophysical Journal.

[6]  L. Rezzolla,et al.  Using evolutionary algorithms to model relativistic jets , 2019, Astronomy & Astrophysics.

[7]  Roger Cappallo,et al.  EHT-HOPS Pipeline for Millimeter VLBI Data Reduction , 2019, The Astrophysical Journal.

[8]  Zhaohuan Zhu,et al.  Generalized Warped Disk Equations , 2019, The Astrophysical Journal.

[9]  D. Ryu,et al.  Shock Waves and Energy Dissipation in Magnetohydrodynamic Turbulence , 2018, The Astrophysical Journal.

[10]  A. Broderick,et al.  Impact of Accretion Flow Dynamics on Gas-dynamical Black Hole Mass Estimates , 2018, The Astrophysical Journal.

[11]  R. Narayan,et al.  Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87 , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  S. Chakrabarti,et al.  Evolution of X-Ray Properties of MAXI J1535-571: Analysis with the TCAF Solution , 2018, The Astrophysical Journal.

[13]  Kyle Barbary,et al.  dynesty: Dynamic Nested Sampling package , 2018 .

[14]  E. Quataert,et al.  Two-temperature GRRMHD Simulations of M87 , 2018, The Astrophysical Journal.

[15]  E. Ros,et al.  The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale , 2018, Astronomy & Astrophysics.

[16]  T. Lauer,et al.  Principal Component Analysis as a Tool for Characterizing Black Hole Images and Variability , 2018, The Astrophysical Journal.

[17]  Kazunori Akiyama,et al.  Interferometric Imaging Directly with Closure Phases and Closure Amplitudes , 2018, 1803.07088.

[18]  William Junor,et al.  The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz , 2018, 1802.06166.

[19]  Jean-Charles Cuillandre,et al.  The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond) , 2018, 1802.05526.

[20]  J. Hjorth,et al.  A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations , 2018, 1801.06080.

[21]  C. Herdeiro,et al.  Shadows and strong gravitational lensing: a brief review , 2018, General Relativity and Gravitation.

[22]  D. Psaltis,et al.  Event Horizon Telescope observations as probes for quantum structure of astrophysical black holes , 2016, 1606.07814.

[23]  Wenbin Lu,et al.  Stellar disruption events support the existence of the black hole event horizon , 2017, 1703.00023.

[24]  K. Bouman,et al.  Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope Using Sparse Modeling , 2017, 1702.07361.

[25]  Kazunori Akiyama,et al.  Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling , 2017, 1702.00424.

[26]  V. Fish,et al.  Reconstruction of Static Black Hole Images Using Simple Geometric Forms , 2016, 1609.00055.

[27]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[28]  K. Bouman,et al.  HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE , 2016, 1605.06156.

[29]  D. Psaltis,et al.  BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS , 2016, 1602.00692.

[30]  J. A. Fern'andez-Ontiveros,et al.  The central parsecs of M87: jet emission and an elusive accretion disc , 2015, 1508.02302.

[31]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[32]  M. Kino,et al.  HIGH-SENSITIVITY 86 GHz (3.5 mm) VLBI OBSERVATIONS OF M87: DEEP IMAGING OF THE JET BASE AT A RESOLUTION OF 10 SCHWARZSCHILD RADII , 2015, 1512.03783.

[33]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[34]  M. Gurwell,et al.  A BLACK HOLE MASS-VARIABILITY TIMESCALE CORRELATION AT SUBMILLIMETER WAVELENGTHS , 2015, 1508.06603.

[35]  Alan E. E. Rogers,et al.  230 GHz VLBI OBSERVATIONS OF M87: EVENT‐HORIZON‐SCALE STRUCTURE DURING AN ENHANCED VERY‐HIGH‐ENERGY γ ?> ‐RAY STATE IN 2012 , 2015, 1505.03545.

[36]  J. Silk,et al.  Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy. , 2015, 1505.00785.

[37]  M. Rieke,et al.  THE EVENT HORIZON OF M87 , 2015, 1503.03873.

[38]  Daniel P. Marrone,et al.  A GENERAL RELATIVISTIC NULL HYPOTHESIS TEST WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF THE BLACK HOLE SHADOW IN Sgr A* , 2014, 1411.1454.

[39]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[40]  A. Loeb,et al.  TESTING THE NO-HAIR THEOREM WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF SAGITTARIUS A* , 2013, 1311.5564.

[41]  E. Ford,et al.  RUN DMC: AN EFFICIENT, PARALLEL CODE FOR ANALYZING RADIAL VELOCITY OBSERVATIONS USING N-BODY INTEGRATIONS AND DIFFERENTIAL EVOLUTION MARKOV CHAIN MONTE CARLO , 2013, 1311.5229.

[42]  H. Falcke,et al.  Toward the event horizon—the supermassive black hole in the Galactic Center , 2013, 1311.1841.

[43]  K. Asada,et al.  THE PARABOLIC JET STRUCTURE IN M87 AS A MAGNETOHYDRODYNAMIC NOZZLE , 2013, 1308.1436.

[44]  Mareki Honma,et al.  THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII , 2013, 1308.1411.

[45]  Ayman Bin Kamruddin,et al.  A geometric crescent model for black hole images , 2013, 1306.3226.

[46]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[47]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[48]  Harvard-Smithsonian Center for Astrophysics,et al.  GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES , 2013, 1303.5057.

[49]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[50]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[51]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[52]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[53]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[54]  Harvard,et al.  EVIDENCE FOR LOW BLACK HOLE SPIN AND PHYSICALLY MOTIVATED ACCRETION MODELS FROM MILLIMETER-VLBI OBSERVATIONS OF SAGITTARIUS A* , 2010, 1011.2770.

[55]  John P. Blakeslee,et al.  The inner halo of M 87: a first direct view of the red-giant population , 2010, 1009.3202.

[56]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[57]  T. Johannsen,et al.  TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES , 2010, 1005.1931.

[58]  Eric W. Peng,et al.  THE ACS FORNAX CLUSTER SURVEY. V. MEASUREMENT AND RECALIBRATION OF SURFACE BRIGHTNESS FLUCTUATIONS AND A PRECISE VALUE OF THE FORNAX–VIRGO RELATIVE DISTANCE , 2009, 0901.1138.

[59]  Katherine Freese,et al.  Apparent shape of super-spinning black holes , 2008, 0812.1328.

[60]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[61]  Paul S. Smith,et al.  The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst , 2008, Nature.

[62]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[63]  Ramesh Narayan,et al.  Advection-Dominated Accretion and the Black Hole Event Horizon , 2008, 0803.0322.

[64]  Steve Su,et al.  Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R , 2007 .

[65]  M. Lister,et al.  The Inner Jet of the Radio Galaxy [OBJECTNAME STATUS="LINKS"]M87[/OBJECTNAME] , 2007 .

[66]  Steve Su,et al.  Numerical maximum log likelihood estimation for generalized lambda distributions , 2007, Comput. Stat. Data Anal..

[67]  J. Tonry,et al.  The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and the Three-dimensional Structure of the Virgo Cluster , 2007, astro-ph/0702510.

[68]  R. Walker,et al.  High-Frequency VLBI Imaging of the Jet Base of M87 , 2007, astro-ph/0701511.

[69]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[70]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[71]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[72]  R. Walker,et al.  An Attempt to Probe the Radio Jet Collimation Regions in NGC 4278, NGC 4374 (M84), and NGC 6166 , 2003, astro-ph/0309743.

[73]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[74]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[75]  R. Narayan,et al.  Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows , 2000, astro-ph/0004195.

[76]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[77]  J. Tonry,et al.  The Surface Brightness Fluctuation Survey of Galaxy Distances. II. Local and Large-Scale Flows , 1999, astro-ph/9907062.

[78]  Luis C. Ho,et al.  The Spectral Energy Distributions of Low-Luminosity Active Galactic Nuclei , 1998, astro-ph/9905012.

[79]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[80]  Cambridge,et al.  The 'Quiescent' black hole in M87 , 1996, astro-ph/9610097.

[81]  Andre Lannes Homological aspects of radio imaging and optical interferometry , 1990, Optics & Photonics.

[82]  A. Lannes Remarkable algebraic structures of phase-closure imaging and their algorithmic implications in aperture synthesis , 1990 .

[83]  Shrinivas R. Kulkarni,et al.  Self-noise in interferometers - radio and infrared , 1989 .

[84]  Marshall Freimer,et al.  a study of the generalized tukey lambda family , 1988 .

[85]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[86]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[87]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[88]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[89]  K. Shortridge,et al.  Dynamical evidence for a central mass concentration in the galaxy M87. , 1978 .

[90]  James A. Westphal,et al.  Evidence for a supermassive object in the nucleus of the galaxy M87 from SIT and CCD area photometry. , 1978 .

[91]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[92]  Alan E. E. Rogers,et al.  The structure of radio sources 3C 273B and 3C 84 deduced from the "closure" phases and visibility amplitudes observed with three-element interferometers. , 1974 .

[93]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[94]  John E. Shelton People's Republic of China , 1973 .

[95]  B. G. Clark,et al.  A compact radio source in the nucleus of M82. , 1969 .

[96]  J. Tukey The Future of Data Analysis , 1962 .

[97]  M. Laue Die allgemeine Relativitätstheorie und Einsteins Lehre von der Schwerkraft , 1921 .