Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000
暂无分享,去创建一个
Alfred J. van der Poorten | Hugh C. Williams | Herman J. J. te Riele | H. Williams | J. PoortenvanderA. | J. RieleteH.J. | J. PoortenvanderA. | J. RieleteH.J.
[1] Karl Dilcher,et al. A search for Wieferich and Wilson primes , 1997, Math. Comput..
[2] H. Lenstra. On the calculation of regulators and class numbers of quadratic fields , 1982 .
[3] L. J. Mordell,et al. On a Pellian equation conjecture , 1960 .
[4] Alfred J. van der Poorten,et al. Computer verification of the Ankeny-Artin-Chowla Conjecture for all primes less than 100 000 000 000 , 2001, Math. Comput..
[5] N. Ankeny,et al. A note on the class number of real quadratic fields , 1960 .
[6] N. Ankeny,et al. A further note on the class number of real quadratic fields , 1962 .
[7] L. J. Mordell. On a Pellian Equation Conjecture (II) , 1961 .
[8] S Chowla. ON THE CLASS NUMBER OF REAL QUADRATIC FIELDS. , 1961, Proceedings of the National Academy of Sciences of the United States of America.
[9] Michael J. Jacobson,et al. An Investigation of Bounds for the Regulator of Quadratic Fields , 1995, Exp. Math..
[10] H. C. Williams,et al. Some computational results on a problem concerning powerful numbers , 1988 .
[11] SANDRA FILLEBROWN,et al. Faster Computation of Bernoulli Numbers , 1992, J. Algorithms.
[12] Marvin C. Wunderlich,et al. On the parallel generation of the residues for the continued fraction factoring algorithm , 1987 .
[13] H. C. Williams,et al. Some Computer Results on Units of Quadratic and Cubic Fields , 1975 .