Energy-saving optimal control for a factual electrostatic precipitator with multiple electric-field stages based on GA

Abstract For energy-saving control of electrostatic precipitator with multiple electric-field stages, a new optimal control strategy to minimize the total power consumption by adjusting the secondary voltages subject to the dust outlet concentration requirement is suggested. The optimal problem is established on the basis of the proposed mathematical models on the secondary voltage relating to the outlet concentration, the secondary current, the primary voltage and the primary current, and is solved by the genetic algorithm. A practice application to an industrial precipitator is given as well.

[1]  Sanjiv K. Bhatia Adaptive K-Means Clustering , 2004, FLAIRS Conference.

[2]  Barbara Hayes-Roth,et al.  Intelligent Control , 1994, Artif. Intell..

[3]  Norbert Klippel,et al.  The influence of high-voltage pulse parameters on corona current in electrostatic precipitators , 2000 .

[4]  Zhang Zheng-wei,et al.  A Method for the On-line Determination of the Efficiency of a Neural Network-based Electrostatic Precipitator , 2005 .

[5]  W. P. Dexter Ueber die Trennung der Wolframsäure vom Zinnoxyd , 1854 .

[6]  Cheng Shao,et al.  A new method for detecting spark in electrostatic precipitation , 2011, International Conference on Information Science and Technology.

[7]  I. Gallimberti Recent advancements in the physical modelling of electrostatic precipitators , 1998 .

[8]  Ke Zhong,et al.  Effects of geometric parameters and electric indexes on the performance of laboratory-scale electrostatic precipitators. , 2009, Journal of hazardous materials.

[9]  A. Mizuno,et al.  Electrostatic precipitation , 2000 .

[10]  T. Lakshminarayana,et al.  Automatic control and management of electrostatic precipitator , 1999 .

[11]  Peter J. Fleming,et al.  GENETIC ALGORITHMS IN CONTROL SYSTEMS ENGINEERING , 2001 .

[12]  Li Da-zhong Optimized Control of the Working Voltage for Electrostatic Precipitator Based on Intellective Method , 2006 .

[13]  Wallace B. Smith,et al.  A mathematical model for calculating electrical conditions in wire‐duct electrostatic precipitation devices , 1977 .

[14]  Andreas Zintl,et al.  Electrostatic Precipitator Control Systems , 2010, IEEE Industry Applications Magazine.

[15]  Juliusz B. Gajewski,et al.  Effect of the particle diameter and corona electrode geometry on the particle migration velocity in electrostatic precipitators , 2001 .

[16]  Harry J. White,et al.  Industrial Electrostatic Precipitation , 1963 .

[17]  Walther Deutsch,et al.  Bewegung und Ladung der Elektrizitätsträger im Zylinderkondensator , 1922 .

[18]  Gene Cooperman A unified efficiency theory for electrostatic precipitators , 1984 .