Mutate now, die later. Evolutionary dynamics with delayed selection.

[1]  Andreas Wagner,et al.  Neutral network sizes of biological RNA molecules can be computed and are not atypically small , 2008, BMC Bioinformatics.

[2]  R. Gentleman,et al.  Modeling synthetic lethality , 2008, Genome Biology.

[3]  Axel Mosig,et al.  Structure and Function of the Smallest Vertebrate Telomerase RNA from Teleost Fish* , 2008, Journal of Biological Chemistry.

[4]  S. Reppert,et al.  Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus) , 2008, PloS one.

[5]  R. Verdun,et al.  Replication and protection of telomeres , 2007, Nature.

[6]  M. Eigen,et al.  The molecular quasi-species , 2007 .

[7]  J. J. Bull,et al.  Theory of Lethal Mutagenesis for Viruses , 2007, Journal of Virology.

[8]  Andreas Wagner,et al.  New structural variation in evolutionary searches of RNA neutral networks , 2006, Biosyst..

[9]  Peter F. Stadler,et al.  Evolving towards the hypercycle: A spatial model of molecular evolution , 2006 .

[10]  W. Kaelin The Concept of Synthetic Lethality in the Context of Anticancer Therapy , 2005, Nature Reviews Cancer.

[11]  B. de Boer,et al.  Advances in Artificial Life, Lecture Notes in Artificial Intelligence 3630 , 2005 .

[12]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[13]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[14]  BÄRBEL M. R. STADLER,et al.  Diffusion of a Population of Interacting Replicators in sequence Space , 2002, Adv. Complex Syst..

[15]  Claus O Wilke,et al.  Maternal effects in molecular evolution. , 2001, Physical review letters.

[16]  Erik Winfree,et al.  Evolution as Computation , 2002, Natural Computing Series.

[17]  G. Wagner,et al.  The topology of the possible: formal spaces underlying patterns of evolutionary change. , 2001, Journal of theoretical biology.

[18]  A. Lapedes,et al.  Exploring protein sequence space using knowledge-based potentials. , 2001, Journal of theoretical biology.

[19]  Claus O. Wilke,et al.  SELECTION FOR FITNESS VERSUS SELECTION FOR ROBUSTNESS IN RNA SECONDARY STRUCTURE FOLDING , 2001, Evolution; international journal of organic evolution.

[20]  B. Garvik,et al.  Principles for the buffering of genetic variation. , 2001 .

[21]  B. Garvik,et al.  Principles for the Buffering of Genetic Variation , 2001, Science.

[22]  Christian M. Reidys,et al.  Neutrality in fitness landscapes , 2001, Appl. Math. Comput..

[23]  C V Forst,et al.  Replication and mutation on neutral networks , 2001, Bulletin of mathematical biology.

[24]  M. Blasco,et al.  Disease states associated with telomerase deficiency appear earlier in mice with short telomeres , 1999, The EMBO journal.

[25]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[26]  Christoph Adami,et al.  Evolution of genetic organization in digital organisms , 1999, ArXiv.

[27]  Michele Vendruscolo,et al.  Neutral evolution of model proteins: diffusion in sequence space and overdispersion. , 1998, Journal of theoretical biology.

[28]  丹伊田浩行 Severe growth defect in mouse cells lacking the telomerase RNA component(テロメレースRNAコンポーネント欠損細胞の増殖欠陥) , 1999 .

[29]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[30]  Christoph Adami,et al.  Artificial life VI : proceedings of the sixth International Conference on Artificial Life , 1998 .

[31]  L. Barnett Ruggedness and neutrality—the NKp family of fitness landscapes , 1998 .

[32]  H. Niida,et al.  Severe growth defect in mouse cells lacking the telomerase RNA component , 1998, Nature Genetics.

[33]  R. DePinho,et al.  Essential role of mouse telomerase in highly proliferative organs , 1998, Nature.

[34]  P. Stadler,et al.  Neutral networks in protein space: a computational study based on knowledge-based potentials of mean force. , 1997, Folding & design.

[35]  P. Schuster,et al.  Generic properties of combinatory maps: neutral networks of RNA secondary structures. , 1997, Bulletin of mathematical biology.

[36]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration II. Structures of neutral networks and shape space covering , 1996 .

[37]  M. Huynen,et al.  Smoothness within ruggedness: the role of neutrality in adaptation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral networks , 1995 .

[39]  Christian M. Reidys,et al.  Evolutionary Dynamics and Optimization: Neutral Networks as Model-Landscapes for RNA Secondary-Structure Folding-Landscapes , 1995, ECAL.

[40]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[42]  B. Derrida,et al.  Evolution in a flat fitness landscape , 1991 .

[43]  Schuster,et al.  Physical aspects of evolutionary optimization and adaptation. , 1989, Physical review. A, General physics.

[44]  N. D. Riley The Monarch Butterfly. , 1951, Science.