Nonideal Sampling and Regularization Theory

Shannon's sampling theory and its variants provide effective solutions to the problem of reconstructing a signal from its samples in some "shift-invariant" space, which may or may not be bandlimited. In this paper, we present some further justification for this type of representation, while addressing the issue of the specification of the best reconstruction space. We consider a realistic setting where a multidimensional signal is prefiltered prior to sampling, and the samples are corrupted by additive noise. We adopt a variational approach to the reconstruction problem and minimize a data fidelity term subject to a Tikhonov-like (continuous domain) L2 -regularization to obtain the continuous-space solution. We present theoretical justification for the minimization of this cost functional and show that the globally minimal continuous-space solution belongs to a shift-invariant space generated by a function (generalized B-spline) that is generally not bandlimited. When the sampling is ideal, we recover some of the classical smoothing spline estimators. The optimal reconstruction space is characterized by a condition that links the generating function to the regularization operator and implies the existence of a B-spline-like basis. To make the scheme practical, we specify the generating functions corresponding to the most popular families of regularization operators (derivatives, iterated Laplacian), as well as a new, generalized one that leads to a new brand of Matern splines. We conclude the paper by proposing a stochastic interpretation of the reconstruction algorithm and establishing an equivalence with the minimax and minimum mean square error (MMSE/Wiener) solutions of the generalized sampling problem.

[1]  Shuichi Itoh,et al.  On sampling in shift invariant spaces , 2002, IEEE Trans. Inf. Theory.

[2]  G. Goodwin,et al.  Reconstruction of multidimensional bandlimited signals from nonuniform and generalized samples , 2005, IEEE Transactions on Signal Processing.

[3]  Yonina C. Eldar,et al.  General Framework for Consistent Sampling in Hilbert Spaces , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[4]  I. J. Schoenberg,et al.  Cardinal interpolation and spline functions , 1969 .

[5]  J. M. Whittaker The “Fourier” Theory of the Cardinal Function , 1928 .

[6]  Christophe Rabut,et al.  Elementarym-harmonic cardinal B-splines , 1992, Numerical Algorithms.

[7]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[8]  Hans R. Künsch,et al.  Optimal lattices for sampling , 2005, IEEE Transactions on Information Theory.

[9]  J. L. Véhel,et al.  Stochastic fractal models for image processing , 2002, IEEE Signal Process. Mag..

[10]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[11]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[12]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[13]  Michael Unser,et al.  Precision isosurface rendering of 3D image data , 2003, IEEE Trans. Image Process..

[14]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[15]  Brandon J. Whitcher,et al.  Wavelet-based bootstrapping of spatial patterns on a finite lattice , 2006, Comput. Stat. Data Anal..

[16]  Thierry Blu,et al.  Isotropic polyharmonic B-splines: scaling functions and wavelets , 2005, IEEE Transactions on Image Processing.

[17]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[18]  Steven H. Izen,et al.  Generalized sampling expansion on lattices , 2005, IEEE Transactions on Signal Processing.

[19]  Thierry Blu,et al.  Generalized smoothing splines and the optimal discretization of the Wiener filter , 2005, IEEE Transactions on Signal Processing.

[20]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[21]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[22]  Yonina C. Eldar,et al.  A minimum squared-error framework for generalized sampling , 2006, IEEE Transactions on Signal Processing.

[23]  Thierry Blu,et al.  Fractional Splines and Wavelets , 2000, SIAM Rev..

[24]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[25]  Kung Yao,et al.  Applications of Reproducing Kernel Hilbert Spaces-Bandlimited Signal Models , 1967, Inf. Control..

[26]  Anastasios N. Venetsanopoulos,et al.  Regularization theory in image restoration-the stabilizing functional approach , 1990, IEEE Trans. Acoust. Speech Signal Process..

[27]  L. Schwartz Théorie des distributions , 1966 .

[28]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[29]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[30]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[31]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[32]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[33]  Richard K. Moore,et al.  From theory to applications , 1986 .

[34]  Yonina C. Eldar,et al.  Nonideal sampling and interpolation from noisy observations in shift-invariant spaces , 2006, IEEE Transactions on Signal Processing.

[35]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[36]  Masahiro Yamamoto,et al.  CONVOLUTION INEQUALITIES AND APPLICATIONS , 2003 .

[37]  A. Feuer On the necessity of Papoulis' result for multidimensional GSE , 2004, IEEE Signal Processing Letters.

[38]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[39]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[40]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[41]  W. Madych,et al.  Polyharmonic cardinal splines , 1990 .

[42]  Ivan W. Selesnick,et al.  Interpolating multiwavelet bases and the sampling theorem , 1999, IEEE Trans. Signal Process..

[43]  K. B. Haley,et al.  Optimization Theory with Applications , 1970 .

[44]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[45]  P. P. Vaidyanathan,et al.  Generalized sampling theorems in multiresolution subspaces , 1997, IEEE Trans. Signal Process..

[46]  Xiang-Gen Xia,et al.  On sampling theorem, wavelets, and wavelet transforms , 1993, IEEE Trans. Signal Process..

[47]  Guy Demoment,et al.  Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..

[48]  D. A. LINDENt A Discussion of Sampling Theorems * , 2022 .

[49]  Dimitri Van De Ville,et al.  Polyharmonic smoothing splines and the multidimensional Wiener filtering of fractal-like signals , 2006, IEEE Transactions on Image Processing.

[50]  Yonina C. Eldar,et al.  Non-Ideal Sampling and Interpolation from Noisy Observations in Shift-Invariant Spaces , 2005 .

[51]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[52]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[53]  M. Zuhair Nashed,et al.  General sampling theorems for functions in reproducing kernel Hilbert spaces , 1991, Math. Control. Signals Syst..

[54]  M. Unser,et al.  Approximation Error for Quasi-Interpolators and (Multi-)Wavelet Expansions , 1999 .

[55]  R. L. Stens,et al.  Sampling theory in Fourier and signal analysis : advanced topics , 1999 .

[56]  J. L. Brown,et al.  Sampling reconstruction of N-dimensional band-limited images after multilinear filtering , 1989 .

[57]  A. Aldroubi,et al.  Sampling procedures in function spaces and asymptotic equivalence with shannon's sampling theory , 1994 .

[58]  F. O. Huck,et al.  Wiener restoration of sampled image data: end-to-end analysis , 1988 .