Quantum Stackelberg duopoly with incomplete information

We investigate the quantum version of the Stackelberg duopoly with incomplete information, especially how the quantum entanglement affects the first-mover advantage in the classical form. It is found that while positive entanglement enhances the first-mover advantage beyond the classical limit, the advantage is dramatically suppressed by negative entanglement. Moreover, despite that positive quantum entanglement improves the first-mover's tolerance for the informational incompleteness, the quantum effect does not change the basic fact that Firm A's lack of complete information of Firm B's unit cost is eradicating the first-mover advantage.

[1]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[2]  Derek Abbott,et al.  AN INTRODUCTION TO QUANTUM GAME THEORY , 2002 .

[3]  D. Kiang,et al.  Quantum Stackelberg duopoly , 2003 .

[4]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[5]  D. Kiang,et al.  Quantum Bertrand duopoly with differentiated products , 2004 .

[6]  C. Benton Mathematical physics research at the cutting edge , 2004 .

[7]  H. Bierman,et al.  Game theory with economic applications , 1993 .

[8]  Hui Li,et al.  Continuous-Variable Quantum Games , 2002 .

[9]  J. Sladkowski,et al.  The next stage: quantum game theory , 2003, quant-ph/0308027.

[10]  Simon C. Benjamin,et al.  Multiplayer quantum games , 2001 .

[11]  Jiangfeng Du,et al.  Quantum games of asymmetric information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Neil F. Johnson,et al.  Exploiting randomness in quantum information processing , 2002 .