Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover

[1]  M. Lemmon,et al.  Martian Dust Devils Observed Simultaneously by Imaging and by Meteorological Measurements , 2018 .

[2]  Jeffrey R. Johnson,et al.  Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy , 2017, Icarus.

[3]  Agustin Sanchez-Lavega,et al.  A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data , 2018 .

[4]  M. Lemmon,et al.  Erratum to: The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity , 2017 .

[5]  Javier Gómez-Elvira,et al.  Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. , 2017, Icarus.

[6]  Mark T. Lemmon,et al.  Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements , 2017 .

[7]  M. D. Smith,et al.  The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity , 2017 .

[8]  Robert M. Haberle,et al.  The atmosphere and climate of Mars , 2017 .

[9]  M. Lemmon,et al.  Dust Devil Activity at the Curiosity Mars Rover Field Site , 2017 .

[10]  M. Lemmon,et al.  The Mars Dust Cycle , 2017 .

[11]  Mark T. Lemmon,et al.  Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes , 2016 .

[12]  Javier Gómez-Elvira,et al.  The meteorology of Gale crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations , 2016 .

[13]  Javier Gómez-Elvira,et al.  The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling. Part II: Interpretation , 2016 .

[14]  M. Lemmon,et al.  Convective vortices and dust devils at the MSL landing site: Annual variability , 2016 .

[15]  Germán David Mendoza Martínez,et al.  A model to calculate solar radiation fluxes on the Martian surface , 2015 .

[16]  M. Richardson,et al.  The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model , 2015 .

[17]  Jeffrey R. Johnson,et al.  Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets , 2015, Earth and space science.

[18]  M. Lemmon,et al.  Eight-year climatology of dust optical depth on Mars , 2014, 1409.4841.

[19]  J. Bell,et al.  Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission , 2014, 1403.4234.

[20]  Javier Gómez-Elvira,et al.  Curiosity's rover environmental monitoring station: Overview of the first 100 sols , 2014 .

[21]  M. Richardson,et al.  The impact of resolution on the dynamics of the martian global atmosphere: Varying resolution studies with the MarsWRF GCM , 2012 .

[22]  R. Haberle,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012, Space Science Reviews.

[23]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[24]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[25]  Reg G. Willson,et al.  Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation , 2012 .

[26]  J. Dudhia,et al.  Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model , 2012 .

[27]  Simon J. Hook,et al.  Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data , 2011 .

[28]  Geoffrey A. Landis,et al.  Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates , 2010 .

[29]  Bruce A. Cantor,et al.  Ultraviolet dust aerosol properties as observed by MARCI , 2010 .

[30]  P. Stella,et al.  The Mars surface environment and solar array performance , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[31]  M. D. Ellehoj,et al.  Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site , 2010 .

[32]  Michael D. Smith THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008 , 2009 .

[33]  Jeffrey R. Johnson,et al.  Overview of the magnetic properties experiments on the Mars Exploration Rovers , 2009 .

[34]  Mark I. Richardson,et al.  PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics , 2007 .

[35]  Jeffrey R. Johnson,et al.  Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets , 2007 .

[36]  Robert M. Haberle,et al.  Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model , 2006 .

[37]  K. Kinch,et al.  Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model , 2006 .

[38]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[39]  R. Wilson,et al.  Simulation of the Martian dust cycle with the GFDL Mars GCM , 2004 .

[40]  Pascal Rannou,et al.  Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model , 2004 .

[41]  J F Bell,et al.  Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.

[42]  Stephen R. Lewis,et al.  The Martian climate revisited : atmosphere and environment of a desert planet , 2004 .

[43]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[44]  Per Nornberg,et al.  Magnetic Properties Experiments on the Mars Exploration Rover mission , 2003 .

[45]  Mark T. Lemmon,et al.  Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra , 2003 .

[46]  J. Murphy,et al.  Mars Pathfinder convective vortices: Frequency of occurrence , 2002 .

[47]  F. Forget,et al.  Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations , 2002 .

[48]  Matthew P. Larkin,et al.  A Simple Thermodynamical Theory for Dust Devils , 1998 .

[49]  NW Leslie,et al.  Interpretation , 1989, Veterinary Record.

[50]  R. M. Haberle,et al.  Diurnal variations in optical depth at Mars , 1989 .

[51]  Raymond E. Arvidson,et al.  Two Mars years of surface changes seen at the Viking landing sites , 1982 .

[52]  Robert M. Haberle,et al.  Some effects of global dust storms on the atmospheric circulation of Mars , 1980 .

[53]  J. Joseph,et al.  The delta-Eddington approximation for radiative flux transfer , 1976 .