SeaWiFS validation in European coastal waters using optical and bio-geochemical measurements

The National Aeronautics & Space Administration (NASA) Sea viewing Wide Field of view Sensor (SeaWiFS) began operational measurement of ocean colour in September 1997. Upgrades to the SeaWiFS data processing system (SeaDAS) have occurred frequently and the effects of these revisions on the remotely sensed estimates of chlorophyll-a concentration (chl-a) have been significant. Measurements of chl-a from research work in the Bay of Biscay and Gulf of Cadiz during 1998–1999 are used to validate the SeaWiFS chl-a product generated using the current version of SeaDAS (version 4.1). The validation data cover coastal and offshore waters, including those dominated by inorganic suspended sediment, and an intense dinoflagellate bloom where shipboard chl-a measurements exceeded 50 mg m−3. The standard SeaWiFS chlorophyll algorithm (OC4v4) generally performed well, but significantly over-estimated chl-a where inorganic suspended sediment was present. The algorithm is only applicable to chl-a values up to 64 mg m−3, which was less than chl-a at the centre of the bloom. A novel algorithm for chl-a, which first estimates the inherent optical properties of the water, was applied to the SeaWiFS measurements but failed on over 90% of the pixels, perhaps because SeaWiFS is under-estimating water reflectance at the extreme blue end of the visible spectrum.