Quantum channel simulation of phylogenetic branching models

Quantum channel simulations constructing probability tensors for biological multi-taxa in phylogenetics are proposed. These are given in terms of positive trace preserving maps (quantum channels), operating on quantum density matrices, using evolving systems of quantum walks with multiple walkers. Simulation of a variety of standard phylogenetic branching models, applying on trees of various topologies, is constructed using appropriate decoherent quantum circuits. For the sequences of biological characters so modelled, quantum simulations of statistical inference for them are constructed, given appropriate aligned molecular sequence data. This is achieved by the introduction of a quantum pruning map, operating on likelihood operator observables, utilizing state-observable duality and quantum measurement theory. More general stategies for related quantum simulation targets are also discussed.

[1]  Michael A. Charleston,et al.  Phylogenetic estimation with partial likelihood tensors , 2008, Journal of theoretical biology.

[2]  P. Jarvis,et al.  Lie Markov models with purine/pyrimidine symmetry , 2012, Journal of mathematical biology.

[3]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[4]  J. C. Regier,et al.  More taxa or more characters revisited: combining data from nuclear protein-encoding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). , 2000, Systematic biology.

[5]  Seth Sullivant,et al.  Algebraic Statistics for Computational Biology: The Strand Symmetric Model , 2005 .

[6]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[7]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[8]  Tamir Tuller,et al.  Maximum Likelihood of Evolutionary Trees Is Hard , 2005, RECOMB.

[9]  Wojciech Tadej,et al.  Birkhoff’s Polytope and Unistochastic Matrices, N = 3 and N = 4 , 2005 .

[10]  M. Ozawa Quantum measuring processes of continuous observables , 1984 .

[11]  M. Kimura Estimation of evolutionary distances between homologous nucleotide sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Kurt Jacobs,et al.  Information-tradeoff relations for finite-strength quantum measurements , 2001 .

[13]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[14]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[15]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[16]  J. Sumner,et al.  A New Hierarchy of Phylogenetic Models Consistent with Heterogeneous Substitution Rates , 2014, Systematic biology.

[17]  Elchanan Mossel,et al.  Evolutionary trees and the Ising model on the Bethe lattice: a proof of Steel’s conjecture , 2005, ArXiv.

[18]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[19]  J G Sumner,et al.  Lie Markov models. , 2011, Journal of theoretical biology.

[20]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[21]  John T. Lewis,et al.  An operational approach to quantum probability , 1970 .

[23]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[24]  Dimitris G. Angelakis,et al.  Quantum Simulations with Photons and Polaritons , 2017 .

[25]  Vlatko Vedral,et al.  Quantum physics meets biology , 2009, HFSP journal.

[26]  R. Feynman Simulating physics with computers , 1999 .

[27]  S. R. Clark,et al.  What is a quantum simulator? , 2014 .

[29]  B. Holland,et al.  The Algebra of the General Markov Model on Phylogenetic Trees and Networks , 2010, Bulletin of mathematical biology.

[30]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[31]  P. Jarvis,et al.  Matrix group structure and Markov invariants in the strand symmetric phylogenetic substitution model , 2013, Journal of mathematical biology.

[32]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[33]  J G Sumner,et al.  Markov invariants, plethysms, and phylogenetics. , 2007, Journal of theoretical biology.