Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.

Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein.

[1]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Peter Uetz,et al.  The Escherichia coli K-12 ORFeome: a resource for comparative molecular microbiology , 2010, BMC Genomics.

[3]  Koji Hayashi,et al.  Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110 , 2006, Molecular systems biology.

[4]  K Timmis,et al.  Cloning, isolation, and characterization of replication regions of complex plasmid genomes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Monica Riley,et al.  Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 , 2006, Nucleic acids research.

[6]  H. Mori,et al.  Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. , 2006, DNA research : an international journal for rapid publication of reports on genes and genomes.

[7]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[8]  T. Ogura,et al.  Structure and function of the F plasmid genes essential for partitioning. , 1986, Journal of molecular biology.

[9]  B C Kline,et al.  A review of mini-F plasmid maintenance. , 1985, Plasmid.

[10]  Tom M. Conrad,et al.  Development of a system for discovery of genetic interactions for essential genes in Escherichia coli K-12. , 2013, Genes & genetic systems.

[11]  Huiming Ding,et al.  eSGA: E. coli synthetic genetic array analysis , 2008, Nature Methods.

[12]  T. Kruse,et al.  Dysfunctional MreB inhibits chromosome segregation in Escherichia coli , 2003, The EMBO journal.

[13]  Thomas Kruse,et al.  The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane‐bound complex , 2004, Molecular microbiology.

[14]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[15]  A. Camilli,et al.  Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms , 2013, Nature Reviews Microbiology.

[16]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  N. Krogan,et al.  Phenotypic Landscape of a Bacterial Cell , 2011, Cell.

[18]  Koreaki Ito,et al.  SecM facilitates translocase function of SecA by localizing its biosynthesis. , 2005, Genes & development.

[19]  H. E. Lane Replication and incompatibility of F and plasmids in the IncFI Group. , 1981, Plasmid.

[20]  Yukako Tohsato,et al.  Phenotype profiling of single gene deletion mutants of E. coli using Biolog technology. , 2008, Genome informatics. International Conference on Genome Informatics.

[21]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[22]  T. Ogura,et al.  Mechanisms essential for stable inheritance of mini-F plasmid. , 1985, Basic life sciences.

[23]  H. Matsuda,et al.  A novel, simple, high-throughput method for isolation of genome-wide transposon insertion mutants of Escherichia coli K-12. , 2008, Methods in molecular biology.

[24]  S. Hiraga Mechanisms of stable plasmid inheritance. , 1986, Advances in biophysics.

[25]  Sean R. Collins,et al.  A tool-kit for high-throughput, quantitative analyses of genetic interactions in E. coli , 2008, Nature Methods.

[26]  Masaru Tomita,et al.  Update on the Keio collection of Escherichia coli single-gene deletion mutants , 2009, Molecular systems biology.

[27]  K. Isono,et al.  The physical map of the whole E. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library , 1987, Cell.

[28]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Helinski,et al.  Method for the isolation of the replication region of a bacterial replicon: construction of a mini-F'kn plasmid , 1976, Journal of bacteriology.

[30]  Koreaki Ito,et al.  Translation arrest of SecM is essential for the basal and regulated expression of SecA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T Horiuchi,et al.  Functional genomics of Escherichia coli in Japan. , 2000, Research in microbiology.

[32]  Takeyuki Tamura,et al.  Colony-live — a high-throughput method for measuring microbial colony growth kinetics— reveals diverse growth effects of gene knockouts in Escherichia coli , 2014, BMC Microbiology.

[33]  H. Mori,et al.  The construction of systematic in-frame, single-gene knockout mutant collection in Escherichia coli K-12. , 2008, Methods in molecular biology.