Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2.

Resonance energy transfer (RET) from plasmonic metal nanoparticles (NPs) to two-dimensional (2D) materials enhances the performance of 2D optoelectronic devices and sensors. Herein, single-NP scattering spectroscopy is employed to investigate plasmon-trion and plasmon-exciton RET from single Au nanotriangles (AuNTs) to monolayer MoS2, at room temperature. The large quantum confinement and reduced dielectric screening in monolayer MoS2 facilitates efficient RET between single plasmonic metal NPs and the monolayer. Because of the large exciton binding energy of monolayer MoS2, charged excitons (i.e., trions) are observed at room temperature, which enable us to study the plasmon-trion interactions under ambient conditions. Tuning of plasmon-trion and plasmon-exciton RET is further achieved by controlling the dielectric constant of the medium surrounding the AuNT-MoS2 hybrids. Our observation of switchable plasmon-trion and plasmon-exciton RET inspires new applications of the hybrids of 2D materials and metal nanoparticles.

[1]  Jiangtian Li,et al.  Plasmon-induced resonance energy transfer for solar energy conversion , 2015, Nature Photonics.

[2]  Jianfang Wang,et al.  Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. , 2011, Nanoscale.

[3]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[4]  Benxia Li,et al.  Metal/Semiconductor Hybrid Nanostructures for Plasmon‐Enhanced Applications , 2014, Advanced materials.

[5]  Bumsu Lee,et al.  Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. , 2015, Nano letters.

[6]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[7]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[8]  Ana Laura Elías,et al.  Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers , 2014 .

[9]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[10]  J. Leotin,et al.  Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. , 2014, ACS nano.

[11]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[12]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[13]  Jiang-Tao Liu,et al.  Enhanced absorption of monolayer MoS2 with resonant back reflector , 2014, 1403.0894.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[16]  Jing Zhang,et al.  Nanoantenna-enhanced light-matter interaction in atomically thin WS2 , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[17]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[18]  Matthew Pelton,et al.  Modified spontaneous emission in nanophotonic structures , 2015, Nature Photonics.

[19]  Luis M Liz-Marzán,et al.  Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. , 2014, ACS nano.

[20]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[21]  Luis M Liz-Marzán,et al.  Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. , 2015, Nano letters.

[22]  C. Rao,et al.  Graphene analogues of inorganic layered materials. , 2013, Angewandte Chemie.

[23]  Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. , 2016, Nano letters.

[24]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[25]  Dameng Liu,et al.  Solvatochromic effect on the photoluminescence of MoS₂ monolayers. , 2013, Small.

[26]  Andrew G. Glen,et al.  APPL , 2001 .

[27]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[28]  Bengkang Tay,et al.  Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling. , 2017, ACS nano.

[29]  Kebin Shi,et al.  Ultrafast Plasmonic Hot Electron Transfer in Au Nanoantenna/MoS2 Heterostructures , 2016 .

[30]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[31]  T. Majima,et al.  Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS2. , 2017, Nanoscale.

[32]  Paul Mulvaney,et al.  Gold nanorods: Synthesis, characterization and applications , 2005 .

[33]  J. Kong,et al.  Trion-induced negative photoconductivity in monolayer MoS2. , 2014, Physical review letters.

[34]  Lefebvre,et al.  Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[35]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[36]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[37]  L. Liz‐Marzán,et al.  A "Tips and Tricks" Practical Guide to the Synthesis of Gold Nanorods. , 2015, The journal of physical chemistry letters.

[38]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[39]  Takashi Taniguchi,et al.  Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. , 2014, ACS nano.

[40]  D. Ritchie,et al.  Observation of Charge Transport by Negatively Charged Excitons , 2001, Science.

[41]  Yimin Kang,et al.  Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. , 2015, Nanoscale.

[42]  Catherine J. Murphy,et al.  Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed , 2004 .

[43]  Taewook Kang,et al.  Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer , 2007, Nature Methods.

[44]  I. Moreels,et al.  Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets , 2015 .

[45]  Jing Kong,et al.  Dielectric screening of excitons and trions in single-layer MoS2. , 2014, Nano letters.

[46]  Taewook Kang,et al.  Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. , 2009, Nano letters.

[47]  Naomi J. Halas,et al.  Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells , 2014 .

[48]  Huanjun Chen,et al.  Gold nanorods and their plasmonic properties. , 2013, Chemical Society reviews.

[49]  Younan Xia,et al.  Gold nanostructures: engineering their plasmonic properties for biomedical applications. , 2006, Chemical Society reviews.

[50]  D. Smirnov,et al.  New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides , 2014, Scientific Reports.

[51]  P. Ajayan,et al.  Active Light Control of the MoS2 Monolayer Exciton Binding Energy. , 2015, ACS nano.

[52]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[53]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[54]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[55]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[56]  W. Marsden I and J , 2012 .

[57]  Gang Lu,et al.  Optical identification of single- and few-layer MoS₂ sheets. , 2012, Small.

[58]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[59]  Yuebing Zheng,et al.  Molecular-Fluorescence Enhancement via Blue-Shifted Plasmon-Induced Resonance Energy Transfer. , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[60]  S. Seal,et al.  Recent development in 2D materials beyond graphene , 2015 .

[61]  He Excitons in anisotropic solids: The model of fractional-dimensional space. , 1991, Physical review. B, Condensed matter.

[62]  Bumsu Lee,et al.  Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array. , 2015, Nano letters.

[63]  Zongpeng Wang,et al.  Well-oriented epitaxial gold nanotriangles and bowties on MoS2 for surface-enhanced Raman scattering. , 2015, Nanoscale.

[64]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[65]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[66]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.