C HERMITE INTERPOLATION BY PYTHAGOREAN HODOGRAPH SPACE CURVES

We solve the problem of C 2 Hermite interpolation by Pythagorean Hodograph (PH) space curves. More precisely, for any set of C 2 space boundary data (two points with associated first and second derivatives) we construct a four-dimensional family of PH interpolants of degree 9 and introduce a geometrically invariant parameterization of this family. This parameterization is used to identify a particular solution, which has the following properties. First, it preserves planarity, i.e., the interpolant to planar data is a planar PH curve. Second, it has the best possible approximation order 6. Third, it is symmetric in the sense that the interpolant of the "reversed" set of boundary data is simply the "reversed" original interpolant. This particular PH interpolant is exploited for designing algorithms for converting (possibly piecewise) analytical curves into a piecewise PH curve of degree 9 which is globally C 2 , and for simple rational approximation of pipe surfaces with a piecewise analytical spine curve. The algorithms are presented along with an analysis of their error and approximation order.

[1]  Rida T. Farouki,et al.  Construction and shape analysis of PH quintic Hermite interpolants , 2001, Comput. Aided Geom. Des..

[2]  Carla Manni,et al.  Characterization and construction of helical polynomial space curves , 2004 .

[3]  Malcolm A. Sabin,et al.  High accuracy geometric Hermite interpolation , 1987, Comput. Aided Geom. Des..

[4]  Hwan Pyo Moon,et al.  Clifford Algebra, Spin Representation, and Rational Parameterization of Curves and Surfaces , 2002, Adv. Comput. Math..

[5]  K. K. Kubota Pythagorean Triples in Unique Factorization Domains , 1972 .

[6]  Rida T. Farouki,et al.  Structural invariance of spatial Pythagorean hodographs , 2002, Comput. Aided Geom. Des..

[7]  K. Saitou,et al.  Least squares tool path approximation with Pythagorean hodograph curves for high speed CNC machining , 2002 .

[8]  Chung-Nim Lee,et al.  Geometry of root-related parameters of PH curves , 2003, Appl. Math. Lett..

[9]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[10]  Rida T. Farouki,et al.  Real rational curves are not 'unit speed' , 1991, Comput. Aided Geom. Des..

[11]  Bert Jüttler,et al.  Hermite interpolation by Pythagorean hodograph curves of degree seven , 2001, Math. Comput..

[12]  Hyeong In Choi,et al.  Euler-Rodrigues frames on spatial Pythagorean-hodograph curves , 2002, Comput. Aided Geom. Des..

[13]  Carla Manni,et al.  Spatial C^2 PH quintic splines , 2003 .

[14]  B. Jüttler,et al.  Constructing acceleration continuous tool paths using Pythagorean Hodograph curves , 2005 .

[15]  Dereck S. Meek,et al.  G2 curves composed of planar cubic and Pythagorean hodograph quintic spirals , 1998, Comput. Aided Geom. Des..

[16]  Rida T. Farouki,et al.  Construction ofC2 Pythagorean-hodograph interpolating splines by the homotopy method , 1996, Adv. Comput. Math..

[17]  D. Walton,et al.  Geometric Hermite interpolation with Tschirnhausen cubics , 1997 .

[18]  Bert Jüttler,et al.  Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling , 1999, Comput. Aided Des..

[19]  Jörg Peters,et al.  The 42 equivalence classes of quadratic surfaces in affine n-space , 1998, Comput. Aided Geom. Des..

[20]  Rida T. Farouki,et al.  The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..

[21]  Knut Mørken,et al.  A general framework for high-accuracy parametric interpolation , 1997, Math. Comput..

[22]  Rida T. Farouki,et al.  Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves , 2003, Comput. Aided Geom. Des..

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[25]  Rida T. Farouki,et al.  Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves , 2002, Adv. Comput. Math..

[26]  Rida T. Farouki,et al.  Real-time CNC interpolators for Pythagorean-hodograph curves , 1996, Comput. Aided Geom. Des..

[27]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[28]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves , 2002, Handbook of Computer Aided Geometric Design.

[29]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[30]  R. Farouki,et al.  DESIGN OF RATIONAL CAM PROFILES WITH PYTHAGOREAN-HODOGRAPH CURVES , 1998 .

[31]  Rida T. Farouki,et al.  Contour machining of free-form surfaces with real-time PH curve CNC interpolators , 1999, Comput. Aided Geom. Des..

[32]  Dereck S. Meek,et al.  A generalisation of the Pythagorean hodograph quintic spiral , 2004 .

[33]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[34]  Gershon Elber,et al.  Comparing Offset Curve Approximation Methods , 1997, IEEE Computer Graphics and Applications.

[35]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[36]  Helmut Pottmann,et al.  Curve design with rational Pythagorean-hodograph curves , 1995, Adv. Comput. Math..

[37]  Bert Jüttler,et al.  Spatial Pythagorean Hodograph Quintics and the Approximation of Pipe Surfaces , 2005, IMA Conference on the Mathematics of Surfaces.

[38]  J. Kuipers Quaternions and Rotation Sequences , 1998 .