Circular law for non-central random matrices

Let (Xi,j)16i,j<∞ be an infinite array of i.i.d. complex random variables, with mean m = 0, variance σ2 = 1, and say with finite fourth moment. The famous circular law theorem states that the empirical spectral distribution 1 n(δλ1(X)+· · ·+δλn(X)) of X = (n−1/2Xi,j)16i,j6n converges almost surely, as n → ∞, to the uniform law over the unit disc {z ∈ C; |z| 6 1}. For now, most efforts where focused on the improvement of moments hypotheses for the centered case m = 0. Regarding the non-central case m 6= 0, Silverstein has already observed that almost surely, the eigenvalue of X of largest module goes to infinity as n → ∞, while the rest of the spectrum remains bounded. We show that the circular law theorem remains valid when m 6= 0, by using logarithmic potentials and bounds on extremal singular values. AMS 2000 Mathematical Subject Classification: 60F15; 15A52; 62H99.

[1]  L. Trefethen Spectra and pseudospectra , 2005 .

[2]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[3]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[4]  P. Biane,et al.  Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.

[5]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  G. Pan,et al.  On asymptotics of eigenvectors of large sample covariance matrix , 2007, 0708.1720.

[8]  Michael Neumann,et al.  Distribution of Subdominant Eigenvalues of Random Matrices , 2000 .

[9]  M. Rudelson Invertibility of random matrices: norm of the inverse , 2005, math/0507024.

[10]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[11]  J. Sherman,et al.  Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .

[12]  Michael Neumann,et al.  Distribution of Subdominant Eigenvalues of Matrices with Random Rows , 2002, SIAM J. Matrix Anal. Appl..

[13]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.

[14]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[15]  R. C. Thompson The behavior of eigenvalues and singular values under perturbations of restricted rank , 1976 .

[16]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[17]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[18]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[19]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[20]  A. Andrews Eigenvalues and singular values of certain random matrices , 1990 .

[21]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[22]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[23]  Arup Bose,et al.  Another look at the moment method for large dimensional random matrices , 2008 .

[24]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[25]  B. Rider A limit theorem at the edge of a non-Hermitian random matrix ensemble , 2003 .

[26]  J. W. Silverstein THE SPECTRAL RADII AND NORMS OF LARGE DIMENSIONAL NON-CENTRAL RANDOM MATRICES , 1994 .

[27]  Brian Rider,et al.  Order Statistics and Ginibre's Ensembles , 2004 .