Horsefly object-directed polarotaxis is mediated by a stochastically distributed ommatidial subtype in the ventral retina
暂无分享,去创建一个
Marko Kreft | Martin F. Wehling | M. Kreft | A. Meglič | P. Pirih | Gregor Belušič | Marko Ilić | Andrej Meglič | Primož Pirih | Aleš Škorjanc | Aleš Škorjanc | M. Wehling | G. Belušič | Marko Ilić
[1] T. J. Wardill,et al. Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.
[2] T. Labhart,et al. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.
[3] R. Hardie. Functional Organization of the Fly Retina , 1985 .
[4] G. D. Bernard,et al. Some aspects of the retinal organization of Sympycnus linetaus Loew (Diptera, Dolichopodidae). , 1972, Journal of ultrastructure research.
[5] H. Wunderer,et al. Functional morphology of the retina of Chrysops caecutiens L. and Haematopota pluvialis L. (Diptera: Tabanidae): region around eye equator , 1986 .
[6] K. Fischbach,et al. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.
[7] T. Wachtler,et al. Color Discrimination with Broadband Photoreceptors , 2013, Current Biology.
[8] Thomas Labhart,et al. Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila , 2016, The Journal of Neuroscience.
[9] J. Edman,et al. Visual ecology of biting flies. , 1987, Annual review of entomology.
[10] Gábor Horváth,et al. New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces , 2012, Naturwissenschaften.
[11] D. Stavenga,et al. Functional interplay of visual, sensitizing and screening pigments in the eyes of Drosophila and other red‐eyed dipteran flies , 2017, The Journal of physiology.
[12] M. Wernet,et al. Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits , 2018, Front. Cell. Neurosci..
[13] Gábor Horváth,et al. Polarized Light and Polarization Vision in Animal Sciences , 2014, Springer Series in Vision Research.
[14] J. Chainey. Horse-flies, deer-flies and clegs (Tabanidae) , 1993 .
[15] Doekele G. Stavenga,et al. Fly visual pigments difference in visual pigments of blowfly and dronefly peripheral retinula cells , 2004, Journal of comparative physiology.
[16] H. Langer,et al. Die Struktur des Rhabdoms im „Doppelauge“ des Wasserläufers Gerris lacustris , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[17] H. Browman,et al. Wavelength-dependent polarization orientation in Daphnia , 2000, Journal of Comparative Physiology A.
[18] Robert M. Greenberg,et al. Sensitivity and photopigments of R1-6, a two-peaked photoreceptor, inDrosophila, Calliphora andMusca , 2004, Journal of comparative physiology.
[19] H. Vries,et al. Properties of the eye with respect to polarized light , 1953 .
[20] Sarah E. J. Arnold,et al. University of Huddersfield Repository Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly 'Glossina Fuscipes Fuscipes' , 2012 .
[21] H. Wunderer,et al. Regional differences in a nematoceran retina (Insecta, Diptera) , 1985, Zoomorphology.
[22] A. Kelber,et al. Polarisation-dependent colour vision in Papilio butterflies. , 2001, The Journal of experimental biology.
[23] C. Desplan,et al. Establishing and maintaining gene expression patterns: insights from sensory receptor patterning , 2013, Development.
[24] H. Wunderer,et al. Crustacean-like rhabdoms at the dorsal rim of several dipteran eyes (Syrphidae, Tabanidae) , 1990, Naturwissenschaften.
[25] A. Snyder. Polarization sensitivity of individual retinula cells , 1973, Journal of comparative physiology.
[26] S. Laughlin,et al. Optimizing the use of a sensor resource for opponent polarization coding , 2017, PeerJ.
[27] D. Stavenga. Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics , 2002, Journal of Comparative Physiology A.
[28] Roger C. Hardie,et al. The compound eye of the tsetse fly (Glossina morsitans morsitans and Glossina palpalis palpalis) , 1989 .
[29] Thomas Labhart,et al. Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.
[30] A. McGregor,et al. Sexual dimorphism and natural variation within and among species in the Drosophila retinal mosaic , 2014, BMC Evolutionary Biology.
[31] K. Kirschfeld. Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten , 1971, Naturwissenschaften.
[32] K Kirschfeld,et al. Fluorescence of photoreceptor cells observed in vivo. , 1981, Science.
[33] Martin Heisenberg,et al. The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.
[34] Reinhard Wolf,et al. Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.
[35] R. Schwind,et al. Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca , 2004, Cell and Tissue Research.
[36] A. Meglič,et al. Extreme polarisation sensitivity in the retina of the corn borer moth Ostrinia , 2017, Journal of Experimental Biology.
[37] Peter F Stadler,et al. Patterning the insect eye: From stochastic to deterministic mechanisms , 2017, PLoS Comput. Biol..
[38] Martin Heisenberg,et al. Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila , 2010, Proceedings of the National Academy of Sciences.
[39] R. Wehner. Astronavigation in insects , 1984 .
[40] Gábor Horváth,et al. Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light , 2008, Naturwissenschaften.
[41] Nicholas W Roberts,et al. The molecular basis of mechanisms underlying polarization vision , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.
[42] Andreas S. Thum,et al. The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.
[43] Claude Desplan,et al. The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.
[44] Stanley Heinze. Polarization Vision , 2014, Encyclopedia of Computational Neuroscience.
[45] M. F. Moody,et al. The discrimination of polarized light by Octopus: a behavioural and morphological study , 1961, Zeitschrift für vergleichende Physiologie.
[46] A. Barta,et al. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment , 2017, Royal Society Open Science.
[47] D. Stavenga,et al. Simple exponential functions describing the absorbance bands of visual pigment spectra , 1993, Vision Research.
[48] D. Stavenga. Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila , 2003, Journal of Comparative Physiology A.
[49] C. Zuker,et al. Opsin of Calliphora peripheral photoreceptors R1-6. Homology with Drosophila Rh1 and posttranslational processing. , 1990, The Journal of biological chemistry.
[50] H. Sasaki. Comparison of capturing tabanid flies (Diptera: Tabanidae) by five different color traps in the fields , 2001 .
[51] Swimming behaviour tunes fish polarization vision to double prey sighting distance , 2019, Scientific Reports.
[52] H. Wunderer,et al. Twisting of blowfly (Calliphora erythrocephala meigen) (Diptera, Calliphoridae) rhabdomeres: an in vivo feature unaffected by preparation or fixation , 1981 .
[53] I. N. Flamarique. Swimming behaviour tunes fish polarization vision to double prey sighting distance. , 2019 .
[54] R. Wehner. Astronovigation in Insects , 1984 .
[55] H. Wunderer,et al. Fly rhabdomeres twist in vivo , 1981, Journal of comparative physiology.
[56] S. Laughlin,et al. Dichroism and absorption by photoreceptors , 1975, Journal of comparative physiology.
[57] Gerald M. Rubin,et al. The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster , 1991, Cell and Tissue Research.
[58] N. Strausfeld,et al. Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.
[59] M. Kreft,et al. The Fly Sensitizing Pigment Enhances UV Spectral Sensitivity While Preventing Polarization-Induced Artifacts , 2018, Front. Cell. Neurosci..
[60] Thomas Labhart,et al. Polarization-opponent interneurons in the insect visual system , 1988, Nature.
[61] Gregor Belušič,et al. A fast multispectral light synthesiser based on LEDs and a diffraction grating , 2016, Scientific reports.
[62] K. Kirschfeld,et al. Absorbtion properties of photopigments in single rods, cones and rhabdomeres , 1969 .
[63] G. D. Bernard,et al. Photoreceptor twist: a solution to the false-color problem. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[64] R. Hardie,et al. Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.
[65] Thomas Labhart,et al. Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors , 2003, Cell.
[66] Camilla R. Sharkey,et al. Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator , 2015, Journal of Experimental Biology.
[67] R. Wehner,et al. Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor , 1977, The Journal of general physiology.
[68] N. Justin Marshall,et al. Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab , 2015, Current Biology.
[69] S. Wada,et al. Spezielle randzonale ommatidien der fliegen (diptera : brachycera): architektur und verteilung in den komplexauaen , 1974, Zeitschrift für Morphologie der Tiere.
[70] K. Arikawa,et al. Polarization-based brightness discrimination in the foraging butterfly, Papilio xuthus , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.
[71] M. Bate,et al. The development of Drosophila melanogaster , 1993 .
[72] J. Stoffolano,et al. Effects of Background Contrast on Visual Attraction and Orientation of Tabanus nigrovittatus (Diptera: Tabanidae) , 1986 .
[73] B. Hackenberger,et al. Key to the horse flies fauna of Croatia (Diptera, Tabanidae) , 2011 .
[74] L. Chadwell,et al. Identification of a Novel Drosophila Opsin Reveals Specific Patterning of the R7 and R8 Photoreceptor Cells , 1996, Neuron.
[75] Thomas Labhart,et al. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area , 2006, Journal of Comparative Physiology A.
[76] D. Reiff,et al. Color Processing in the Early Visual System of Drosophila , 2018, Cell.
[77] R. Mizell,et al. TROLLING: A NOVEL TRAPPING METHOD FOR CHRYSOPS SPP. (DIPTERA: TABANIDAE) , 2002 .
[78] Ussell,et al. TROLLING: A NOVEL TRAPPING METHOD FOR CHRYSOPS SPP , 2002 .