Horsefly object-directed polarotaxis is mediated by a stochastically distributed ommatidial subtype in the ventral retina

Significance Insect compound eyes are a random array of 2 or more subtypes of optical units, the ommatidia. Some ommatidia may contain photoreceptors sensitive to polarized light, but their functional integration into the visual system has not been explained. Here, we report that horsefly retina contains 2 ommatidial subtypes that separately analyze polarization of light and color. Horseflies seek their prey by detecting polarized reflections from animal fur. We explain why horseflies are attracted to shiny and to blue objects. Understanding this mechanism will help in controlling fly disease vectors. This study gives an explanation for ommatidial subtype specialization that goes beyond color vision and which is likely a common feature of many insect eyes. The ventral compound eye of many insects contains polarization-sensitive photoreceptors, but little is known about how they are integrated into visual functions. In female horseflies, polarized reflections from animal fur are a key stimulus for host detection. To understand how polarization vision is mediated by the ventral compound eye, we investigated the band-eyed brown horsefly Tabanus bromius using anatomical, physiological, and behavioral approaches. Serial electron microscopic sectioning of the retina and single-cell recordings were used to determine the spectral and polarization sensitivity (PS) of photoreceptors. We found 2 stochastically distributed subtypes of ommatidia, analogous to pale and yellow of other flies. Importantly, the pale analog contains an orthogonal analyzer receptor pair with high PS, formed by an ultraviolet (UV)-sensitive R7 and a UV- and blue-sensitive R8, while the UV-sensitive R7 and green-sensitive R8 in the yellow analog always have low PS. We tested horsefly polarotaxis in the field, using lures with controlled spectral and polarization composition. Polarized reflections without UV and blue components rendered the lures unattractive, while reflections without the green component increased their attractiveness. This is consistent with polarotaxis being guided by a differential signal from polarization analyzers in the pale analogs, and with an inhibitory role of the yellow analogs. Our results reveal how stochastically distributed sensory units with modality-specific division of labor serve as separate and opposing input channels for visual guidance.

[1]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[2]  T. Labhart,et al.  Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.

[3]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[4]  G. D. Bernard,et al.  Some aspects of the retinal organization of Sympycnus linetaus Loew (Diptera, Dolichopodidae). , 1972, Journal of ultrastructure research.

[5]  H. Wunderer,et al.  Functional morphology of the retina of Chrysops caecutiens L. and Haematopota pluvialis L. (Diptera: Tabanidae): region around eye equator , 1986 .

[6]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[7]  T. Wachtler,et al.  Color Discrimination with Broadband Photoreceptors , 2013, Current Biology.

[8]  Thomas Labhart,et al.  Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila , 2016, The Journal of Neuroscience.

[9]  J. Edman,et al.  Visual ecology of biting flies. , 1987, Annual review of entomology.

[10]  Gábor Horváth,et al.  New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces , 2012, Naturwissenschaften.

[11]  D. Stavenga,et al.  Functional interplay of visual, sensitizing and screening pigments in the eyes of Drosophila and other red‐eyed dipteran flies , 2017, The Journal of physiology.

[12]  M. Wernet,et al.  Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits , 2018, Front. Cell. Neurosci..

[13]  Gábor Horváth,et al.  Polarized Light and Polarization Vision in Animal Sciences , 2014, Springer Series in Vision Research.

[14]  J. Chainey Horse-flies, deer-flies and clegs (Tabanidae) , 1993 .

[15]  Doekele G. Stavenga,et al.  Fly visual pigments difference in visual pigments of blowfly and dronefly peripheral retinula cells , 2004, Journal of comparative physiology.

[16]  H. Langer,et al.  Die Struktur des Rhabdoms im „Doppelauge“ des Wasserläufers Gerris lacustris , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[17]  H. Browman,et al.  Wavelength-dependent polarization orientation in Daphnia , 2000, Journal of Comparative Physiology A.

[18]  Robert M. Greenberg,et al.  Sensitivity and photopigments of R1-6, a two-peaked photoreceptor, inDrosophila, Calliphora andMusca , 2004, Journal of comparative physiology.

[19]  H. Vries,et al.  Properties of the eye with respect to polarized light , 1953 .

[20]  Sarah E. J. Arnold,et al.  University of Huddersfield Repository Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly 'Glossina Fuscipes Fuscipes' , 2012 .

[21]  H. Wunderer,et al.  Regional differences in a nematoceran retina (Insecta, Diptera) , 1985, Zoomorphology.

[22]  A. Kelber,et al.  Polarisation-dependent colour vision in Papilio butterflies. , 2001, The Journal of experimental biology.

[23]  C. Desplan,et al.  Establishing and maintaining gene expression patterns: insights from sensory receptor patterning , 2013, Development.

[24]  H. Wunderer,et al.  Crustacean-like rhabdoms at the dorsal rim of several dipteran eyes (Syrphidae, Tabanidae) , 1990, Naturwissenschaften.

[25]  A. Snyder Polarization sensitivity of individual retinula cells , 1973, Journal of comparative physiology.

[26]  S. Laughlin,et al.  Optimizing the use of a sensor resource for opponent polarization coding , 2017, PeerJ.

[27]  D. Stavenga Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics , 2002, Journal of Comparative Physiology A.

[28]  Roger C. Hardie,et al.  The compound eye of the tsetse fly (Glossina morsitans morsitans and Glossina palpalis palpalis) , 1989 .

[29]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[30]  A. McGregor,et al.  Sexual dimorphism and natural variation within and among species in the Drosophila retinal mosaic , 2014, BMC Evolutionary Biology.

[31]  K. Kirschfeld Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten , 1971, Naturwissenschaften.

[32]  K Kirschfeld,et al.  Fluorescence of photoreceptor cells observed in vivo. , 1981, Science.

[33]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[34]  Reinhard Wolf,et al.  Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[35]  R. Schwind,et al.  Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca , 2004, Cell and Tissue Research.

[36]  A. Meglič,et al.  Extreme polarisation sensitivity in the retina of the corn borer moth Ostrinia , 2017, Journal of Experimental Biology.

[37]  Peter F Stadler,et al.  Patterning the insect eye: From stochastic to deterministic mechanisms , 2017, PLoS Comput. Biol..

[38]  Martin Heisenberg,et al.  Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[39]  R. Wehner Astronavigation in insects , 1984 .

[40]  Gábor Horváth,et al.  Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light , 2008, Naturwissenschaften.

[41]  Nicholas W Roberts,et al.  The molecular basis of mechanisms underlying polarization vision , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[43]  Claude Desplan,et al.  The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.

[44]  Stanley Heinze Polarization Vision , 2014, Encyclopedia of Computational Neuroscience.

[45]  M. F. Moody,et al.  The discrimination of polarized light by Octopus: a behavioural and morphological study , 1961, Zeitschrift für vergleichende Physiologie.

[46]  A. Barta,et al.  Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment , 2017, Royal Society Open Science.

[47]  D. Stavenga,et al.  Simple exponential functions describing the absorbance bands of visual pigment spectra , 1993, Vision Research.

[48]  D. Stavenga Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila , 2003, Journal of Comparative Physiology A.

[49]  C. Zuker,et al.  Opsin of Calliphora peripheral photoreceptors R1-6. Homology with Drosophila Rh1 and posttranslational processing. , 1990, The Journal of biological chemistry.

[50]  H. Sasaki Comparison of capturing tabanid flies (Diptera: Tabanidae) by five different color traps in the fields , 2001 .

[51]  Swimming behaviour tunes fish polarization vision to double prey sighting distance , 2019, Scientific Reports.

[52]  H. Wunderer,et al.  Twisting of blowfly (Calliphora erythrocephala meigen) (Diptera, Calliphoridae) rhabdomeres: an in vivo feature unaffected by preparation or fixation , 1981 .

[53]  I. N. Flamarique Swimming behaviour tunes fish polarization vision to double prey sighting distance. , 2019 .

[54]  R. Wehner Astronovigation in Insects , 1984 .

[55]  H. Wunderer,et al.  Fly rhabdomeres twist in vivo , 1981, Journal of comparative physiology.

[56]  S. Laughlin,et al.  Dichroism and absorption by photoreceptors , 1975, Journal of comparative physiology.

[57]  Gerald M. Rubin,et al.  The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster , 1991, Cell and Tissue Research.

[58]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[59]  M. Kreft,et al.  The Fly Sensitizing Pigment Enhances UV Spectral Sensitivity While Preventing Polarization-Induced Artifacts , 2018, Front. Cell. Neurosci..

[60]  Thomas Labhart,et al.  Polarization-opponent interneurons in the insect visual system , 1988, Nature.

[61]  Gregor Belušič,et al.  A fast multispectral light synthesiser based on LEDs and a diffraction grating , 2016, Scientific reports.

[62]  K. Kirschfeld,et al.  Absorbtion properties of photopigments in single rods, cones and rhabdomeres , 1969 .

[63]  G. D. Bernard,et al.  Photoreceptor twist: a solution to the false-color problem. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[64]  R. Hardie,et al.  Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.

[65]  Thomas Labhart,et al.  Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors , 2003, Cell.

[66]  Camilla R. Sharkey,et al.  Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator , 2015, Journal of Experimental Biology.

[67]  R. Wehner,et al.  Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor , 1977, The Journal of general physiology.

[68]  N. Justin Marshall,et al.  Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab , 2015, Current Biology.

[69]  S. Wada,et al.  Spezielle randzonale ommatidien der fliegen (diptera : brachycera): architektur und verteilung in den komplexauaen , 1974, Zeitschrift für Morphologie der Tiere.

[70]  K. Arikawa,et al.  Polarization-based brightness discrimination in the foraging butterfly, Papilio xuthus , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  M. Bate,et al.  The development of Drosophila melanogaster , 1993 .

[72]  J. Stoffolano,et al.  Effects of Background Contrast on Visual Attraction and Orientation of Tabanus nigrovittatus (Diptera: Tabanidae) , 1986 .

[73]  B. Hackenberger,et al.  Key to the horse flies fauna of Croatia (Diptera, Tabanidae) , 2011 .

[74]  L. Chadwell,et al.  Identification of a Novel Drosophila Opsin Reveals Specific Patterning of the R7 and R8 Photoreceptor Cells , 1996, Neuron.

[75]  Thomas Labhart,et al.  Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area , 2006, Journal of Comparative Physiology A.

[76]  D. Reiff,et al.  Color Processing in the Early Visual System of Drosophila , 2018, Cell.

[77]  R. Mizell,et al.  TROLLING: A NOVEL TRAPPING METHOD FOR CHRYSOPS SPP. (DIPTERA: TABANIDAE) , 2002 .

[78]  Ussell,et al.  TROLLING: A NOVEL TRAPPING METHOD FOR CHRYSOPS SPP , 2002 .