Probabilistic Type Theory and Natural Language Semantics

Type theory has played an important role in specifying the formal con- nection between syntactic structure and semantic interpretation within the history of formal semantics. In recent years rich type theories de- veloped for the semantics of programming languages have become in- fluential in the semantics of natural language. The use of probabilistic reasoning to model human learning and cognition has become an in- creasingly important part of cognitive science. In this paper we o ff er a probabilistic formulation of a rich type theory, Type Theory with Records (TTR), and we illustrate how this framework can be used to approach the problem of semantic learning. Our probabilistic version of TTR is intended to provide an interface between the cognitive process of classifying situations according to the types that they instantiate, and the compositional semantics of natural language.

[1]  Staffan Larsson,et al.  Type Theory with Records : a General Framework for Modelling Spatial Language , 2014 .

[2]  Robin Cooper,et al.  Compositional and ontological semantics in learning from corrective feedback and explicit definition , 2006 .

[3]  Noah D. Goodman,et al.  Probabilistic Semantics and Pragmatics: Uncertainty in Language and Thought , 2015 .

[4]  Robin Cooper,et al.  Austinian Truth, Attitudes and Type Theory , 2005 .

[5]  Robin Cooper,et al.  Negation in dialogue , 2011 .

[6]  Shalom Lappin,et al.  An Intensional Parametric Semantics For Vague Quantifiers , 2000 .

[7]  Alfréd Rényi,et al.  Foundations of Probability , 1971 .

[8]  Robin Cooper,et al.  Negative Inquisitiveness and Alternatives-Based Negation , 2011, Amsterdam Colloquium on Logic, Language and Meaning.

[9]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[10]  R. Rosenfeld Truth , 2012, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[11]  Chris Fox,et al.  Foundations of intensional semantics , 2005 .

[12]  Chris Fox,et al.  Expressiveness and Complexity in Underspecified Semantics , 2010 .

[13]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[14]  Uwe Reyle,et al.  From Discourse to Logic - Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory , 1993, Studies in linguistics and philosophy.

[15]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[16]  Alexander Clark,et al.  Learning deterministic context free grammars: The Omphalos competition , 2006, Machine Learning.

[17]  J. Tenenbaum,et al.  The learnability of abstract syntactic principles , 2011, Cognition.

[18]  van Jan Eijck,et al.  Probabilistic Semantics for Natural Language , 2014 .

[19]  Staffan Larsson,et al.  Towards a Formal View of Corrective Feedback , 2009 .

[20]  Zhaohui Luo Contextual Analysis of Word Meanings in Type-Theoretical Semantics , 2011, LACL.

[21]  Max J. Cresswell,et al.  Formal philosophy, selected papers of richard montague , 1976 .

[22]  Barbara H. Partee,et al.  Possible Worlds Semantics and Linguistic Theory , 1977 .

[23]  Zhaohui Luo,et al.  Type-theoretical semantics with coercive subtyping , 2010 .

[24]  Shalom Lappin,et al.  Linguistic Nativism and the Poverty of the Stimulus , 2011 .

[25]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[26]  Staffan Larsson,et al.  Formal semantics for perceptual classification PREPRINT VERSION , 2022 .

[27]  Angelika Kratzer,et al.  Situations in Natural Language Semantics , 2007 .

[28]  Paul M. B. Vitányi,et al.  ‘Ideal learning’ of natural language: Positive results about learning from positive evidence , 2007 .

[29]  Luke S. Zettlemoyer,et al.  Learning to Parse Natural Language Commands to a Robot Control System , 2012, ISER.

[30]  I. Heim E-Type pronouns and donkey anaphora , 1990 .

[31]  Jonathan Ginzburg,et al.  The interactive stance : meaning for conversation , 2012 .

[32]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[33]  Marc Snir,et al.  Probabilities over rich languages, testing and randomness , 1982, Journal of Symbolic Logic.

[34]  Christopher D. Manning,et al.  Probabilistic models of language processing and acquisition , 2006, Trends in Cognitive Sciences.

[35]  Robin Cooper,et al.  Records and Record Types in Semantic Theory , 2005, J. Log. Comput..

[36]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[37]  Nissim Francez,et al.  E-type pronouns, i-sums, and donkey anaphora , 1994 .

[38]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[39]  Luke S. Zettlemoyer,et al.  A Joint Model of Language and Perception for Grounded Attribute Learning , 2012, ICML.

[40]  R. Cooper Type Theory and Semantics in Flux , 2012 .

[41]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[42]  Staffan Larsson,et al.  Modelling Language, Action, and Perception in Type Theory with Records , 2012, CSLP.

[43]  Staffan Larsson,et al.  A Probabilistic Rich Type Theory for Semantic Interpretation , 2014, EACL 2014.

[44]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[45]  Aarne Ranta Type-Theoretical Grammar , 1995 .

[46]  Rudolf Carnap,et al.  Meaning and Necessity , 1947 .

[47]  Judea Pearl,et al.  Bayesian decision methods , 1990 .

[48]  N. Cocchiarella,et al.  Situations and Attitudes. , 1986 .

[49]  Staffan Larsson,et al.  Vagueness and Learning: A Type-Theoretic Approach , 2014, *SEMEVAL.

[50]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[51]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.