Input Pattern Classification Based on the Markov Property of the IMBT with Related Equations and Contingency Tables

In this contribution, we provide a detailed analysis of the search operation for the Interval Merging Binary Tree (IMBT), an efficient data structure proposed earlier to handle typical anomalies in the transmission of data packets. A framework is provided to decide under which conditions IMBT outperforms other data structures typically used in the field, as a function of the statistical characteristics of the commonly occurring anomalies in the arrival of data packets. We use in the modeling Bernstein theorem, Markov property, Fibonacci sequences, bipartite multi-graphs, and contingency tables.

[1]  David R. Karger,et al.  Chord: a scalable peer-to-peer lookup protocol for internet applications , 2003, TNET.

[2]  A. R. Davidson Theory of Probabilities. , 1953 .

[3]  Alexander I. Barvinok Enumerating Contingency Tables via Random Permanents , 2008, Comb. Probab. Comput..

[4]  M. Bóna A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory , 2006 .

[5]  Robert E. Tarjan,et al.  Self-adjusting binary search trees , 1985, JACM.

[6]  Alex Samorodnitsky,et al.  An approximation algorithm for counting contingency tables , 2008, Random Struct. Algorithms.

[7]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[8]  István Finta,et al.  Packet Loss and Duplication Handling in Stream Processing Environment , 2018, 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics (CINTI).

[9]  Steffen L. Lauritzen,et al.  Lectures on Contingency Tables , 2002 .

[10]  Peter J. H. King,et al.  Querying multi-dimensional data indexed using the Hilbert space-filling curve , 2001, SGMD.

[11]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[12]  A E Bostwick,et al.  THE THEORY OF PROBABILITIES. , 1896, Science.

[13]  Kai Lai Chung,et al.  Markov Chains with Stationary Transition Probabilities , 1961 .

[14]  Rudolf Bayer,et al.  Symmetric binary B-Trees: Data structure and maintenance algorithms , 1972, Acta Informatica.

[15]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[16]  P. Doukhan,et al.  A new weak dependence condition and applications to moment inequalities , 1999 .

[17]  M. AdelsonVelskii,et al.  AN ALGORITHM FOR THE ORGANIZATION OF INFORMATION , 1963 .

[18]  Lóránt Farkas,et al.  Interval Merging Binary Tree , 2017, ICA3PP.