Finding Maximum Edge Bicliques in Convex Bipartite Graphs

A bipartite graph G = (A,B,E) is convex on B if there exists an ordering of the vertices of B such that for any vertex v ∈ A, vertices adjacent to v are consecutive in B. A complete bipartite subgraph of a graph G is called a biclique of G. In this paper, we study the problem of finding the maximum edge-cardinality biclique in convex bipartite graphs. Given a bipartite graph G = (A,B,E) which is convex on B, we present a new algorithm that computes the maximum edge-cardinality biclique of G in O(n log3 n log log n) time and O(n) space, where n = |A|. This improves the current O(n2) time bound available for the problem.

[1]  Richard M. Karp,et al.  Discovering local structure in gene expression data: the order-preserving submatrix problem. , 2003 .

[2]  Lhouari Nourine,et al.  Enumeration aspects of maximal cliques and bicliques , 2009, Discret. Appl. Math..

[3]  João Meidanis,et al.  On the Consecutive Ones Property , 1998, Discret. Appl. Math..

[4]  Franco P. Preparata,et al.  Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems , 1981, Acta Informatica.

[5]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[6]  Dieter Kratsch,et al.  Computing a Perfect Edge Without Vertex Elimination Ordering of a Chordal Bipartite Graph , 1995, Inf. Process. Lett..

[7]  Milind Dawande,et al.  On Bipartite and Multipartite Clique Problems , 2001, J. Algorithms.

[8]  Dana Ron,et al.  On Finding Large Conjunctive Clusters , 2003, COLT.

[9]  Uriel Feige,et al.  Resolution lower bounds for the weak pigeon hole principle , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[10]  Kristoffer Arnsfelt Hansen,et al.  Dynamic Matchings in Convex Bipartite Graphs , 2007, MFCS.

[11]  F. Glover Maximum matching in a convex bipartite graph , 1967 .

[12]  Jinsong Tan,et al.  Inapproximability of Maximum Weighted Edge Biclique and Its Applications , 2007, TAMC.

[13]  René Peeters,et al.  The maximum edge biclique problem is NP-complete , 2003, Discret. Appl. Math..

[14]  Marco A. Stefanes,et al.  Algorithms for Maximum Independent Set in Convex Bipartite Graphs , 2007, Algorithmica.

[15]  Andreas Goerdt,et al.  An approximation hardness result for bipartite Clique , 2004, Electron. Colloquium Comput. Complex..

[16]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[17]  Celina M. H. de Figueiredo,et al.  Generating bicliques of a graph in lexicographic order , 2005, Theor. Comput. Sci..

[18]  Maw-Shang Chang,et al.  Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs , 1997, Acta Informatica.

[19]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[20]  Roded Sharan,et al.  Discovering statistically significant biclusters in gene expression data , 2002, ISMB.

[21]  Julian Scott Yeomans,et al.  A linear time algorithm for maximum matchings in convex, bipartite graphs☆ , 1996 .

[22]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[23]  Celina M. H. de Figueiredo,et al.  On the generation of bicliques of a graph , 2007, Discret. Appl. Math..

[24]  Kurt Mehlhorn,et al.  A log log n Data Structure for Three-Sided Range Queries , 1987, Inf. Process. Lett..

[25]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[26]  Peter L. Hammer,et al.  Consensus algorithms for the generation of all maximal bicliques , 2004, Discret. Appl. Math..