Co(OH)2 nanosheet-decorated graphene–CNT composite for supercapacitors of high energy density

Abstract A composite of graphene and carbon nanotubes has been synthesized and characterized for application as supercapacitor electrodes. By coating the nanostructured active material of Co(OH)2 onto one electrode, the asymmetric supercapacitor has exhibited a high specific capacitance of 310 F g−1, energy density of 172 Wh kg−1 and maximum power density of 198 kW kg−1 in ionic liquid electrolyte EMI-TFSI.

[1]  Li Zhang,et al.  All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure , 2015, Nanotechnology.

[2]  S. Russo,et al.  Properties and applications of chemically functionalized graphene , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Norio Shinya,et al.  Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors , 2011 .

[4]  N. Shinya,et al.  Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. , 2011, Physical chemistry chemical physics : PCCP.

[5]  Norio Shinya,et al.  Graphene and nanostructured MnO2 composite electrodes for supercapacitors , 2011 .

[6]  L. Liao,et al.  Preparation and Properties of Ionic-Liquid Mixed Solutions as a Safety Electrolyte for Lithium Ion Batteries , 2011, International Journal of Electrochemical Science.

[7]  F. Wei,et al.  Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes , 2010 .

[8]  D. Ivey,et al.  Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors , 2010 .

[9]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[10]  Y. Tong,et al.  Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[11]  Jeng‐Kuei Chang,et al.  Pseudocapacitive mechanism of manganese oxide in 1-ethyl-3-methylimidazolium thiocyanate ionic liquid electrolyte studied using X-ray photoelectron spectroscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[12]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[13]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[14]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[15]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[16]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[17]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[18]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[19]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[20]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[21]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[22]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[23]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[24]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[25]  F. Béguin,et al.  Supercapacitors based on conducting polymers/nanotubes composites , 2006 .

[26]  François Béguin,et al.  Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations , 2005 .

[27]  L. Kong,et al.  Synthesis of Co(OH)2/USY composite and its application for electrochemical supercapacitors , 2004 .

[28]  Pierre-Louis Taberna,et al.  Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications , 2004 .

[29]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[30]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[31]  M. Rajamathi,et al.  Chemical synthesis of alpha-cobalt hydroxide , 2000 .

[32]  Jeffrey W. Long,et al.  Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials , 1999 .

[33]  T. Allmendinger Electrochemical Storage of Energy , 1991 .

[34]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[35]  B. Conway,et al.  Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage , 1990, Proceedings of the 34th International Power Sources Symposium.

[36]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[37]  Yang Yang,et al.  High-throughput solution processing of large-scale graphene. , 2009, Nature nanotechnology.

[38]  R. Jayashree,et al.  Electrochemical synthesis of a-cobalt hydroxide , 1999 .