Posynomial geometric programming as a special case of semi-infinite linear programming
暂无分享,去创建一个
[1] Sur une classe de fonctions représentées par des intégrales définies , 1883 .
[2] J. E. Kelley,et al. The Cutting-Plane Method for Solving Convex Programs , 1960 .
[3] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[4] R. J. Duffin,et al. An Infinite Linear Program with a Duality Gap , 1965 .
[5] Clarence Zener,et al. Geometric Programming : Theory and Application , 1967 .
[6] R. Duffin. Linearizing Geometric Programs , 1970 .
[7] Yves Smeers,et al. Using semi-infinite programming in geometric programming , 1973 .
[8] R. Dembo,et al. Solution of Generalized Geometric Programs , 1975 .
[9] Gary A. Kochenberger,et al. A linear programming approach to geometric programs , 1978 .
[10] Werner Krabs,et al. Optimization and approximation , 1979 .
[11] Kenneth O. Kortanek,et al. Semi-Infinite Programming and Applications , 1983, ISMP.
[12] D. Bricker,et al. Yet another geometric programming dual algorithm , 1983 .
[13] Klaus Glashoff,et al. Linear Optimization and Approximation , 1983 .