Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy

Commonly used preparation method for thin diamond membranes by focused ion beam (FIB) techniques results in surface damage. Here, the authors introduce an alternative method based on reactive ion etching (RIE). To compare these methods, cross-sectional samples are produced in single crystal diamond, a material that has generated growing interest for a variety of applications. The samples are examined by Raman spectroscopy and high-resolution transmission electron microscopy (TEM). Raman spectra indicate that the crystalline structure of the RIE-processed diamond is preserved, while the FIB-processed diamond membrane has a broad-background sp2 feature. Atomic-resolution TEM imaging demonstrates that the RIE-based process produces no detectable damage, while the FIB-processed sample has an amorphous carbon layer of about 11 nm thick. These findings show that the RIE-based process allows the production of diamond TEM samples with reduced near-surface damage and can thus enable direct examination of growth defects and crystallographic damage induced by processes such as ion implantation and bombardment.

[1]  Processing of photonic crystal nanocavity for quantum information in diamond , 2010, 1012.5878.

[2]  T. Saitoh,et al.  Specimen preparation for high-resolution transmission electron microscopy using focused ion beam and Ar ion milling. , 2004, Journal of Electron Microscopy.

[3]  Dirk Englund,et al.  Long-lived NV− spin coherence in high-purity diamond membranes , 2012 .

[4]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[6]  P. Munroe,et al.  Focused Ion beam implantation of diamond , 2011 .

[7]  Naoko I Kato,et al.  Reducing focused ion beam damage to transmission electron microscopy samples. , 2004, Journal of electron microscopy.

[8]  Andrei Faraon,et al.  Quantum photonic devices in single-crystal diamond , 2013 .

[9]  R. Misra,et al.  Biomaterials , 2008 .

[10]  Jan Meijer,et al.  Charge state manipulation of qubits in diamond , 2012, Nature Communications.

[11]  C. W. Hagen,et al.  Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art , 2009, Nanotechnology.

[12]  Sungho Jin,et al.  Defect‐enhanced electron field emission from chemical vapor deposited diamond , 1995 .

[13]  William F. Banholzer,et al.  Thermal conductivity of isotopically modified single crystal diamond. , 1993 .

[14]  Joachim Mayer,et al.  TEM Sample Preparation and FIB-Induced Damage , 2007 .

[15]  D. Clarke,et al.  Fabrication of thin, luminescent, single-crystal diamond membranes , 2011, 1108.0738.

[16]  R. Elliman,et al.  Cross-sectional transmission electron microscopy method and studies of implant damage in single crystal diamond , 2006 .

[17]  William B. White,et al.  Characterization of diamond films by Raman spectroscopy , 1989 .

[18]  Yury Gogotsi,et al.  Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders , 2009 .

[19]  M. Stutzmann,et al.  Chemical control of the charge state of nitrogen-vacancy centers in diamond , 2010, 1011.5109.

[20]  Diamond processing by focused ion beam—surface damage and recovery , 2011, 1108.0850.

[21]  Brant C. Gibson,et al.  Ion‐Beam‐Assisted Lift‐Off Technique for Three‐Dimensional Micromachining of Freestanding Single‐Crystal Diamond , 2005 .

[22]  A. Greentree,et al.  Mechanism for the Amorphisation of Diamond , 2012, Advanced materials.

[23]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[24]  J. Wrachtrup,et al.  Implantation of labelled single nitrogen vacancy centers in diamond using N15 , 2005, cond-mat/0511722.

[25]  Alexander Zaitsev,et al.  Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks , 2011 .

[26]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[27]  Edward H. Chen,et al.  Planar fabrication of arrays of ion-exfoliated single-crystal-diamond membranes with nitrogen-vacancy color centers , 2013 .

[28]  S. Rubanov,et al.  Ion implantation in diamond using 30 keV Ga+ focused ion beam , 2011 .

[29]  Robert Sinclair,et al.  The preparation of cross‐section specimens for transmission electron microscopy , 1984 .

[30]  Triangular nanobeam photonic cavities in single-crystal diamond , 2011, 1101.1367.

[31]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[32]  T. Schenkel,et al.  In situ optimization of co-implantation and substrate temperature conditions for nitrogen-vacancy center formation in single-crystal diamonds , 2011 .

[33]  David N. Jamieson,et al.  Raman investigation of damage caused by deep ion implantation in diamond , 2000 .

[34]  Hidemi Koike,et al.  Transmission Electron Microscope Sample Preparation Using a Focused Ion Beam , 1994 .

[35]  J. McCaffrey,et al.  Surface damage formation during ion-beam thinning of samples for transmission electron microscopy. , 2001, Ultramicroscopy.

[36]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[37]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[38]  A. K. Ramdas,et al.  Raman Spectrum of Diamond , 1970 .

[39]  R. Elliman,et al.  Amorphization and graphitization of single-crystal diamond — A transmission electron microscopy study , 2009 .

[40]  L. Tang,et al.  Biocompatibility of chemical-vapour-deposited diamond. , 1995, Biomaterials.

[41]  A. Petford-Long,et al.  Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling , 2001 .

[42]  Michael W. Geis,et al.  Diamond emitters fabrication and theory , 1996 .

[43]  D. Twitchen,et al.  High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond , 2002, Science.

[44]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[45]  J. M. Smith,et al.  Fabrication of Ultrathin Single‐Crystal Diamond Membranes , 2008 .

[46]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[47]  Patrick Maletinsky,et al.  Integrated diamond networks for quantum nanophotonics. , 2011, Nano letters.

[48]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[49]  J. Gilman,et al.  Nanotechnology , 2001 .

[50]  I. Walmsley,et al.  Creating diamond color centers for quantum optical applications , 2007, 0710.5379.

[51]  C. Bulle-lieuwma,et al.  Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam , 1993 .