Supercritical ion exchange: A new method to synthesize copper exchanged zeolites

[1]  Shigeki Takishima,et al.  Predicting the solubilities of metal acetylacetonates in supercritical CO2: Thermodynamic approach using PC-SAFT , 2020 .

[2]  U. Simon,et al.  Effects of Extra-Framework Metal Centers on Zeolite-Based NH3-Sensors for Exhaust Gas Abatement , 2020 .

[3]  S. Ordóñez,et al.  Direct oxidation of methane to methanol over Cu-zeolites at mild conditions , 2020, Molecular Catalysis.

[4]  D. Palagin,et al.  Oxidation of methane to methanol over Cu-exchanged zeolites: Scientia gratia scientiae or paradigm shift in natural gas valorization? , 2020 .

[5]  M. Fanciulli,et al.  Bright Blue Emitting Cu-Doped Cs2ZnCl4 Colloidal Nanocrystals , 2020, Chemistry of materials : a publication of the American Chemical Society.

[6]  D. Palagin,et al.  Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. , 2020, Chemical Society reviews.

[7]  C. Erkey,et al.  A Remarkable Class of Nanocomposites: Aerogel Supported Bimetallic Nanoparticles , 2020, Frontiers in Materials.

[8]  Dimitrios K. Pappas,et al.  Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol , 2020 .

[9]  J. A. Bokhoven,et al.  Pathways of Methane Transformation over Copper-Exchanged Mordenite as Revealed by in situ NMR and IR Spectroscopy. , 2019, Angewandte Chemie.

[10]  C. Erkey,et al.  Highly Active Carbon Supported PtCu Electrocatalysts for PEMFCs by in situ Supercritical Deposition Coupled with Electrochemical Dealloying , 2019, Fuel Cells.

[11]  D. Palagin,et al.  Water Molecules Facilitate Hydrogen Release in Anaerobic Oxidation of Methane to Methanol over Cu/Mordenite , 2019, ACS Catalysis.

[12]  V. Valtchev,et al.  Selective catalytic reduction of NOx over Cu- and Fe-exchanged zeolites and their mechanical mixture , 2019, Applied Catalysis B: Environmental.

[13]  D. Palagin,et al.  In Situ X-ray Photoelectron Spectroscopy Detects Multiple Active Sites Involved in the Selective Anaerobic Oxidation of Methane in Copper-Exchanged Zeolites , 2019, ACS Catalysis.

[14]  Lifei Liu,et al.  Highly Mesoporous Ru-MIL-125-NH2 Produced by Supercritical Fluid for Efficient Photocatalytic Hydrogen Production , 2019, ACS Applied Energy Materials.

[15]  A. Horton,et al.  Monomeric Copper(II) Sites Supported on Alumina Selectively Convert Methane to Methanol. , 2019, Angewandte Chemie.

[16]  D. Palagin,et al.  Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites , 2019, Nature Catalysis.

[17]  J. V. van Bokhoven,et al.  Methane-to-Methanol: Activity Descriptors in Copper-Exchanged Zeolites for the Rational Design of Materials , 2019, ACS Catalysis.

[18]  K. Yoshizawa,et al.  Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity , 2019, Catalysis Science & Technology.

[19]  A. Smirnov,et al.  Autoreduction of Copper in Zeolites: Role of Topology, Si/Al Ratio, and Copper Loading , 2019, The Journal of Physical Chemistry C.

[20]  H. Pitsch,et al.  Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH3-SCR Monitoring: The Role of Cu Mobility. , 2019, ACS applied materials & interfaces.

[21]  S. Barcikowski,et al.  Impact of Preparation Method and Hydrothermal Aging on Particle Size Distribution of Pt/γ-Al2O3 and Its Performance in CO and NO Oxidation , 2019, The Journal of Physical Chemistry C.

[22]  M. Newton,et al.  Copper‐Exchanged Omega (MAZ) Zeolite: Copper‐concentration Dependent Active Sites and its Unprecedented Methane to Methanol Conversion , 2018, ChemCatChem.

[23]  E. Borfecchia,et al.  Cu-CHA - a model system for applied selective redox catalysis. , 2018, Chemical Society reviews.

[24]  Dimitrios K. Pappas,et al.  The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. , 2018, Journal of the American Chemical Society.

[25]  J. Bokhoven,et al.  Effect of Brønsted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite , 2018 .

[26]  P. Serna,et al.  Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites , 2018, ACS Catalysis.

[27]  J. Ran,et al.  Different copper species as active sites for NH3-SCR reaction over Cu-SAPO-34 catalyst and reaction pathways: A periodic DFT study , 2018 .

[28]  D. Palagin,et al.  The Effect of the Active-Site Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol. , 2018, Angewandte Chemie.

[29]  J. Bokhoven,et al.  Direct Stepwise Oxidation of Methane to Methanol over Cu–SiO2 , 2018 .

[30]  B. Weckhuysen,et al.  Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NOx with NH3 , 2018 .

[31]  Craig M. Brown,et al.  H2 Adsorption on Cu(I)–SSZ-13 , 2018 .

[32]  C. Aymonier,et al.  In situ Raman investigation of the preparation of HDS catalyst precursors using scCO2 , 2017, The Journal of Supercritical Fluids.

[33]  C. Erkey,et al.  Synthesis of supported nanoparticles in supercritical fluids by supercritical fluid reactive deposition: Current state, further perspectives and needs , 2017 .

[34]  Dimitrios K. Pappas,et al.  Methane to Methanol: Structure-Activity Relationships for Cu-CHA. , 2017, Journal of the American Chemical Society.

[35]  A. Mansouri,et al.  Comparative Study of Diverse Copper Zeolites for the Conversion of Methane into Methanol , 2017 .

[36]  Haibo Yu,et al.  Graphene Aerogel Supported Pt Electrocatalysts for Oxygen Reduction Reaction by Supercritical Deposition , 2017 .

[37]  R. Kizilel,et al.  Mesoporous carbon aerogel supported PtCu bimetallic nanoparticles via supercritical deposition and their dealloying and electrocatalytic behaviour , 2017, Catalysis Today.

[38]  K. Booksh,et al.  Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39 , 2017 .

[39]  D. Palagin,et al.  Selective anaerobic oxidation of methane enables direct synthesis of methanol , 2017, Science.

[40]  Yuehe Lin,et al.  Synthesis of an excellent electrocatalyst for oxygen reduction reaction with supercritical fluid: Graphene cellular monolith with ultrafine and highly dispersive multimetallic nanoparticles , 2017 .

[41]  J. V. van Bokhoven,et al.  Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. , 2017, Accounts of chemical research.

[42]  R. Schomäcker,et al.  Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol , 2017 .

[43]  D. Palagin,et al.  Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: size matters? , 2017, Nanoscale.

[44]  J. Grunwaldt,et al.  Origin of the Normal and Inverse Hysteresis Behavior during CO Oxidation over Pt/Al2O3 , 2017 .

[45]  R. Lobo,et al.  Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant. , 2016, Chemical communications.

[46]  J. Nørskov,et al.  Monocopper Active Site for Partial Methane Oxidation in Cu-Exchanged 8MR Zeolites , 2016 .

[47]  J. Bokhoven,et al.  Methane to methanol over copper mordenite: yield improvement through multiple cycles and different synthesis techniques , 2016 .

[48]  J. Lercher,et al.  Synthesis of single-site copper catalysts for methane partial oxidation. , 2016, Chemical communications.

[49]  A. Cabañas,et al.  Deposition of Ni nanoparticles onto porous supports using supercritical CO2: effect of the precursor and reduction methodology , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  C. Aymonier,et al.  Preparation of Nickel Phosphide Hydrodesulfurization Catalysts Assisted by Supercritical Carbon Dioxide , 2015 .

[51]  E. Hensen,et al.  Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol , 2015, Nature Communications.

[52]  L. Roiban,et al.  Noble metals supported on carbon nanotubes using supercritical fluids for the preparation of composite materials: A look at the interface , 2015 .

[53]  S. Perişanu,et al.  Na+/Cu2+ ion exchange equilibrium on Zeolite A: a thermodynamic study , 2015, Adsorption.

[54]  M. Nachtegaal,et al.  Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. , 2015, Physical chemistry chemical physics : PCCP.

[55]  R. Lobo,et al.  Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. , 2015, Chemical communications.

[56]  T. Sheppard,et al.  A low temperature, isothermal gas-phase system for conversion of methane to methanol over Cu-ZSM-5. , 2014, Chemical communications.

[57]  J. Bokhoven,et al.  Reaction Conditions of Methane-to-Methanol Conversion Affect the Structure of Active Copper Sites , 2014 .

[58]  J. Bonnet,et al.  Supercritical fluid chemical deposition of Pd nanoparticles on magnesium–scandium alloy for hydrogen storage , 2013 .

[59]  C. Erkey,et al.  Thermodynamic Control of Metal Loading and Composition of Carbon Aerogel Supported Pt–Cu Alloy Nanoparticles by Supercritical Deposition , 2013 .

[60]  R. Lobo,et al.  Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[61]  J. Bokhoven,et al.  Determination of the electronic and geometric structure of Cu sites during methane conversion over Cu-MOR with X-ray absorption spectroscopy , 2013 .

[62]  Qin-Qin Xu,et al.  Systematical study of depositing nanoparticles and nanowires in mesoporous silica using supercritical carbon dioxide and co-solvents: morphology control, thermodynamics and kinetics of adsorption , 2012 .

[63]  A. Khokhlov,et al.  Aerogel–copper nanocomposites prepared using the adsorption of a polyfluorinated complex from supercritical CO2 , 2012, Journal of Nanoparticle Research.

[64]  C. Erkey,et al.  Carbon aerogel supported nickel nanoparticles and nanorods using supercritical deposition , 2012 .

[65]  M. Nachtegaal,et al.  Catalytic conversion of methane to methanol over Cu-mordenite. , 2012, Chemical communications.

[66]  B. Sels,et al.  Cu-ZSM-5: A biomimetic inorganic model for methane oxidation. , 2011, Journal of catalysis.

[67]  J. Renuncio,et al.  Deposition of Pd into mesoporous silica SBA-15 using supercritical carbon dioxide , 2011 .

[68]  C. Erkey,et al.  Adsorption of Pt(cod)me2 onto organic aerogels from supercritical solutions for the synthesis of supported platinum nanoparticles , 2011 .

[69]  B. Weckhuysen,et al.  Cu-ZSM-5 Zeolites for the Formation of Methanol from Methane and Oxygen: Probing the Active Sites and Spectator Species , 2010 .

[70]  S. Marre,et al.  Supported metal NPs on magnesium using SCFs for hydrogen storage: Interface and interphase characterization , 2010 .

[71]  B. Weckhuysen,et al.  Partial Oxidation of Methane Over Co-ZSM-5: Tuning the Oxygenate Selectivity by Altering the Preparation Route , 2010 .

[72]  B. Sels,et al.  A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol , 2009, Proceedings of the National Academy of Sciences.

[73]  C. Erkey,et al.  Preparation of carbon black supported Pd, Pt and Pd―Pt nanoparticles using supercritical CO2 deposition , 2009 .

[74]  C. Aymonier,et al.  Hydrogen sorption properties of magnesium particles decorated with metallic nanoparticles as catalyst , 2009 .

[75]  T. Ohkubo,et al.  Potential for C-H Activation in CH4 Utilizing a CuMFI-Type Zeolite as a Catalyst , 2009 .

[76]  S. Marre,et al.  Kinetically Controlled Formation of Supported Nanoparticles in Low Temperature Supercritical Media for the Development of Advanced Nanostructured Materials , 2009 .

[77]  Luc Patiny,et al.  www.nmrdb.org: Resurrecting and processing NMR spectra on-line , 2008 .

[78]  Ying Zhang,et al.  Thermodynamics and kinetics of adsorption of bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium (II) on carbon aerogel from supercritical CO2 solution , 2008 .

[79]  David Olson,et al.  Atlas of Zeolite Framework Types , 2007 .

[80]  Cheng Sun,et al.  Removal of Copper (II) Ions from Aqueous Solutions using Na‐mordenite , 2007 .

[81]  E. Akiba,et al.  Particle decoration in super critical fluid to improve the hydrogen sorption cyclability of magnesium , 2007 .

[82]  A. Dyer Ion-exchange properties of zeolites , 2005 .

[83]  R. Schoonheydt,et al.  Cu based zeolites: A UV–vis study of the active site in the selective methane oxidation at low temperatures , 2005 .

[84]  C. Erkey,et al.  Supported Platinum Nanoparticles by Supercritical Deposition , 2005 .

[85]  P. Jacobs,et al.  Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. , 2005, Journal of the American Chemical Society.

[86]  J. Labinger Selective Alkane Oxidation: Hot and Cold Approaches to a Hot Problem , 2004 .

[87]  P. D. Brown,et al.  Supercritical fluids: A route to palladium-aerogel nanocomposites , 2004 .

[88]  M. Centeno,et al.  alpha-alumina-supported nickel catalysts prepared with nickel acetylacetonate. 1. Adsorption in the liquid phase , 1999 .

[89]  R. Periana,et al.  Platinum catalysts for the high-yield oxidation of methane to a methanol derivative , 1998, Science.

[90]  Jennifer M Murphy,et al.  Copper(II) Removal from Aqueous Solutions by Chelation in Supercritical Carbon Dioxide Using Fluorinated β-Diketones , 1997 .

[91]  C. Colella,et al.  Ion exchange equilibria in zeolite minerals , 1996 .

[92]  T. Suntola,et al.  Preparation of Ni/Al2O3 catalysts from vapor phase by atomic layer epitaxy , 1994 .

[93]  G. Spoto,et al.  Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl: Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide☆ , 1994 .

[94]  Chung-Sung Tan,et al.  Adsorption equilibrium of toluene from supercritical carbon dioxide on activated carbon , 1990 .

[95]  H. Sherry The Ion-Exchange Properties of Zeolites. I. Univalent Ion Exchange in Synthetic Faujasite , 1966 .

[96]  M. T. Rogers,et al.  Keto-Enol Tautomerism in β-Dicarbonyls Studied by Nuclear Magnetic Resonance Spectroscopy.1 I. Proton Chemical Shifts and Equilibrium Constants of Pure Compounds , 1964 .

[97]  Gang Wang,et al.  Selective catalytic oxidation of n-butylamine over Cu-zeolite catalysts , 2020 .

[98]  C. Erkey,et al.  Supercritical deposition: Current status and perspectives for the preparation of supported metal nanostructures , 2015 .

[99]  C. Erkey Preparation of metallic supported nanoparticles and films using supercritical fluid deposition , 2009 .

[100]  C. Erkey,et al.  Decoration of multi-wall carbon nanotubes with platinum nanoparticles using supercritical deposition with thermodynamic control of metal loading , 2007 .

[101]  C. Lamberti,et al.  XANES, EXAFS and FTIR characterization of copper-exchanged mordenite , 1998 .

[102]  Kazunori Yagi,et al.  Development of a site-selective copper-ion-exchanging method for HZSM-5 by vapourization of a hexafluoroacetylacetonato–copper complex , 1997 .

[103]  P. Casey,et al.  Selective oxidation of methane to methanol , 1994 .

[104]  H. Karge,et al.  Introduction of Cations into Zeolites by Solid-State Reaction , 1991 .

[105]  R. P. Townsend,et al.  Transition metal ion exchange in zeolites. Part 1.—Thermodynamics of exchange of hydrated Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ ions in ammonium mordenite , 1976 .