Presence of clay minerals can obscure spectral evidence of Mg sulfates: implications for orbital observations of Mars

[1]  E. Cloutis,et al.  Spectral reflectance properties of minerals exposed to martian surface conditions: Implications for spectroscopy-based mineral detection on Mars , 2021, Planetary and Space Science.

[2]  R. Milliken,et al.  Merging Perspectives on Secondary Minerals on Mars: A Review of Ancient Water-Rock Interactions in Gale Crater Inferred from Orbital and In-Situ Observations , 2021, Minerals.

[3]  M. Salvatore,et al.  X‐Ray Amorphous Components in Sedimentary Rocks of Gale Crater, Mars: Evidence for Ancient Formation and Long‐Lived Aqueous Activity , 2021, Journal of Geophysical Research: Planets.

[4]  M. Parente,et al.  Updated Perspectives and Hypotheses on the Mineralogy of Lower Mt. Sharp, Mars, as Seen From Orbit , 2020, Journal of Geophysical Research: Planets.

[5]  Linda C. Kah,et al.  An interval of high salinity in ancient Gale crater lake on Mars , 2019, Nature Geoscience.

[6]  S. McLennan,et al.  The Sedimentary Cycle on Early Mars , 2019, Annual Review of Earth and Planetary Sciences.

[7]  S. Murchie,et al.  Challenges in the Search for Perchlorate and Other Hydrated Minerals With 2.1‐μm Absorptions on Mars , 2018, Geophysical research letters.

[8]  E. Rampe,et al.  Deriving Amorphous Component Abundance and Composition of Rocks and Sediments on Earth and Mars , 2018, Journal of Geophysical Research: Planets.

[9]  O. Forni,et al.  Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in Gale crater, Mars , 2018, Icarus.

[10]  D. Ming,et al.  Gypsum, bassanite, and anhydrite at Gale crater, Mars , 2018, American Mineralogist.

[11]  D. Ming,et al.  Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars , 2018, Science Advances.

[12]  M. Dyar,et al.  Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars. , 2018, Icarus.

[13]  V. Chevrier,et al.  Constraining the Potential Liquid Water Environment at Gale Crater, Mars , 2018, Journal of geophysical research. Planets.

[14]  Andrew Steele,et al.  Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune , 2017 .

[15]  D. Ming,et al.  Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars , 2017 .

[16]  Linda C. Kah,et al.  Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars , 2017 .

[17]  O. Forni,et al.  Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins , 2016 .

[18]  Shuai Li,et al.  Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra , 2016 .

[19]  D. P. Quinn,et al.  The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets , 2016, Journal of geophysical research. Planets.

[20]  R. Morris,et al.  Characterization of artifacts introduced by the empirical volcano-scan atmospheric correction commonly applied to CRISM and OMEGA near-infrared spectra , 2016 .

[21]  B. Jolliff,et al.  Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates , 2016 .

[22]  A. McEwen,et al.  Transient liquid water and water activity at Gale crater on Mars , 2015 .

[23]  K. Stack,et al.  Modeling near-infrared reflectance spectra of clay and sulfate mixtures and implications for Mars , 2015 .

[24]  J. Bishop,et al.  Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links to global alteration trends , 2014 .

[25]  J. B. Dalton,et al.  What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates , 2014 .

[26]  K. M. Pitman,et al.  The spectral variability of kieserite (MgSO4·H2O) with temperature and grain size and its application to the Martian surface , 2014 .

[27]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[28]  D. Bish,et al.  Crystal structure and hydration/dehydration behavior of Na2Mg(SO4)2·16H2O: A new hydrate phase observed under Mars-relevant conditions , 2013 .

[29]  Jean-Pierre Bibring,et al.  Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .

[30]  K. Robertson,et al.  Constraints on the distribution of CaSO4·nH2O phases on Mars and implications for their contribution to the hydrological cycle , 2013 .

[31]  Alian Wang,et al.  The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences , 2013 .

[32]  S. Wilson,et al.  Stability of Mg-sulfate minerals in the presence of smectites: Possible mineralogical controls on H2O cycling and biomarker preservation on Mars , 2012 .

[33]  B. Jolliff,et al.  Stability of Mg-sulfates at −10°C and the rates of dehydration/rehydration processes under conditions relevant to Mars , 2011 .

[34]  S. Murchie,et al.  Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.

[35]  B. Schmitt,et al.  Kinetics of water adsorption on minerals and the breathing of the Martian regolith , 2010 .

[36]  R. Milliken,et al.  Sources and sinks of clay minerals on Mars , 2010 .

[37]  J. Grotzinger,et al.  Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater , 2010 .

[38]  B. Schmitt,et al.  Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy , 2009 .

[39]  Patrick C. McGuire,et al.  Mineralogy of Juventae Chasma: Sulfates in the light‐toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau , 2009 .

[40]  R. Morris,et al.  Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling , 2009 .

[41]  S. Murchie,et al.  Testing evidence of recent hydration state change in sulfates on Mars , 2009 .

[42]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[43]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[44]  E. Cloutis,et al.  Spectral reflectance properties of minerals exposed to simulated Mars surface conditions , 2008 .

[45]  Jean-Pierre Bibring,et al.  Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars , 2008 .

[46]  M. D. Dyar,et al.  Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas , 2008, Clay Minerals.

[47]  E. Cloutis,et al.  Stability of hydrated minerals on Mars , 2007 .

[48]  I-Ming Chou,et al.  Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates , 2006 .

[49]  D. Vaniman,et al.  Transformations of Mg- and Ca-sulfate hydrates in Mars regolith , 2006 .

[50]  John F. Mustard,et al.  Detection and discrimination of sulfate minerals using reflectance spectroscopy , 2006 .

[51]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[52]  K. Herkenhoff,et al.  Sulfate deposition in subsurface regolith in Gusev crater, Mars , 2006 .

[53]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[54]  O. Toon,et al.  Infrared characterization of water uptake by low‐temperature Na‐montmorillonite: Implications for Earth and Mars , 2005 .

[55]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[56]  David L. Bish,et al.  Magnesium sulphate salts and the history of water on Mars , 2004, Nature.

[57]  S. Erard,et al.  Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures , 2004 .

[58]  D. Vaniman,et al.  Stability of hydrous minerals on the martian surface , 2003 .

[59]  John H. Jones,et al.  The history of Martian volatiles , 1997 .

[60]  C. Pieters,et al.  Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials , 1995 .

[61]  C. Pieters,et al.  Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite , 1994 .

[62]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[63]  D. Bonnin,et al.  Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions , 1987, Clay Minerals.

[64]  D. Bonnin,et al.  Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions , 1986, Clay Minerals.

[65]  T. Roush,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[66]  R. Clark,et al.  The spectral reflectance of water-mineral mixtures at low temperatures. [observed on natural satellites and other solar system objects] , 1981 .

[67]  R. M. Henry,et al.  The annual cycle of pressure on Mars measured by Viking landers 1 and 2 , 1980 .

[68]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[69]  Hermann Harder,et al.  Nontronite synthesis at low temperatures , 1976 .

[70]  H. Harder The role of magnesium in the formation of smectite minerals , 1972 .

[71]  D. Ming,et al.  A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover , 2021, Minerals.

[72]  G. Piccioni,et al.  Temperature-dependent VNIR spectroscopy of hydrated Mg-sulfates , 2017 .

[73]  Linda C. Kah,et al.  Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars , 2017 .

[74]  John J Freeman HYDRATED MAGNESIUM SULFATES BELOW 0 ° C-- STABLE PHASES AND POLYMORPHS , 2009 .

[75]  D. Vaniman,et al.  Experimental stability of magnesium sulfate hydrates that may be present on Mars , 2007 .

[76]  J. Geus,et al.  Non-hydrothermal synthesis, characterisation and catalytic properties of saponite clays , 1995 .