Category theory for linear logicians

This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categories and their relation to intuitionistic logic is followed by a consideration of symmetric monoidal closed, linearly distributive and ∗-autonomous categories and their relation to multiplicative linear logic. We examine nonsymmetric monoidal categories, and consider them as models of noncommutative linear logic. We introduce traced monoidal categories, and discuss their relation to the geometry of interaction. The necessary aspects of the theory of monads is introduced in order to describe the categorical modelling of the exponentials. We conclude by briefly describing the notion of full completeness, a strong form of categorical completeness, which originated in the categorical model theory of linear logic. No knowledge of category theory is assumed, but we do assume knowledge of linear logic sequent calculus and the standard models of linear logic, and modest familiarity with typed lambda calculus.

[1]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[2]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[3]  Yves Lafont,et al.  Interaction nets , 1989, POPL '90.

[4]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[5]  J. Girard,et al.  Proofs and types , 1989 .

[6]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[7]  Jean-Yves Girard,et al.  Geometry of Interaction 1: Interpretation of System F , 1989 .

[8]  David N. Yetter,et al.  Quantales and (noncommutative) linear logic , 1990, Journal of Symbolic Logic.

[9]  K. I. Rosenthal Quantales and their applications , 1990 .

[10]  Andre Scedrov,et al.  Functorial Polymorphism , 1990, Theor. Comput. Sci..

[11]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[12]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[13]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[14]  Radha Jagadeesan,et al.  New foundations for the geometry of interaction , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[15]  A. Troelstra Lectures on linear logic , 1992 .

[16]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[17]  Thomas Ehrhard Hypercoherences: A Strongly Stable Model of Linear Logic , 1993, Math. Struct. Comput. Sci..

[18]  Richard Blute,et al.  Linear Logic, Coherence, and Dinaturality , 1993, Theor. Comput. Sci..

[19]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[20]  Robert D. Rosebrugh,et al.  Constructive complete distributivity IV , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[22]  Ralph Loader Linear logic, totality and full completeness , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[23]  Vincent Danos,et al.  Proof-nets and the Hilbert space , 1995 .

[24]  S. Majid Foundations of Quantum Group Theory , 1995 .

[25]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[26]  J. Girard Geometry of interaction III: accommodating the additives , 1995 .

[27]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[28]  Richard Blute,et al.  Hopf algebras and linear logic , 1996, Mathematical Structures in Computer Science.

[29]  R. Blute,et al.  Natural deduction and coherence for weakly distributive categories , 1996 .

[30]  J. Robin B. Cockett,et al.  ! and ? – Storage as tensorial strength , 1996, Mathematical Structures in Computer Science.

[31]  Philip J. Scott,et al.  Linear Läuchli Semantics , 1996, Ann. Pure Appl. Log..

[32]  Samson Abramsky,et al.  Retracing some paths in Process Algebra , 1996, CONCUR.

[33]  J. Girard PROOF-NETS : THE PARALLEL SYNTAX FOR PROOF-THEORY , 1996 .

[34]  R. A. G. Seely,et al.  Weakly distributive categories , 1997 .

[35]  S. Abramsky Semantics of Interaction: an introduction to Game Semantics , 1997 .

[36]  Roberto M. Amadio,et al.  Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.

[37]  Philip J. Scott,et al.  The Shuffle Hopf Algebra and Noncommutative Full Completeness , 1998, J. Symb. Log..

[38]  R. A. G. Seely,et al.  Linearly distributive functors , 1999 .

[39]  Gordon D. Plotkin,et al.  Full completeness of the multiplicative linear logic of Chu spaces , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[40]  Paul Ruet,et al.  Non-Commutative Logic I: The Multiplicative Fragment , 1999, Ann. Pure Appl. Log..

[41]  Samson Abramsky,et al.  Concurrent games and full completeness , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[42]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[43]  Esfandiar Haghverdi,et al.  Unique decomposition categories, Geometry of Interaction and combinatory logic , 2000, Mathematical Structures in Computer Science.

[44]  Philip J. Scott,et al.  Some aspects of categories in computer science , 2000 .

[45]  Antonio Bucciarelli,et al.  On Phase Semantics and Denotational Semantics in Multiplicative-Additive Linear Logic , 2000, Ann. Pure Appl. Log..

[46]  Masahiro Hamano Pontrjagin duality and full completeness for multiplicative linear logic (without Mix) , 2000, Math. Struct. Comput. Sci..

[47]  Peter Selinger,et al.  Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.

[48]  Masahiro Hamano Z-modules and ful completeness of multiplicative linear logic , 2001, Ann. Pure Appl. Log..

[49]  Thomas Ehrhard,et al.  On Köthe sequence spaces and linear logic , 2002, Mathematical Structures in Computer Science.

[50]  J. Robin B. Cockett,et al.  The Logic of Linear Functors , 2002, Math. Struct. Comput. Sci..

[51]  Samson Abramsky,et al.  Geometry of Interaction and linear combinatory algebras , 2002, Mathematical Structures in Computer Science.

[52]  François Lamarche,et al.  ENTROPIC HOPF ALGEBRAS AND MODELS OF NON-COMMUTATIVE LOGIC , 2002 .

[53]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[54]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[55]  Martin Hyland,et al.  Glueing and orthogonality for models of linear logic , 2003, Theor. Comput. Sci..

[56]  Valeria de Paiva,et al.  Poset-valued sets or how to build models for linear logics , 2004, Theor. Comput. Sci..

[57]  Philip J. Scott,et al.  Softness of hypercoherences and MALL full completeness , 2005, Ann. Pure Appl. Log..