Asymptotic Hodge theory of vector bundles

We introduce several families of filtrations on the space of vector bundles over a smooth projective variety. These filtrations are defined using the large k asymptotics of the kernel of the Dolbeault Dirac operator on a bundle twisted by the kth power of an ample line bundle. The filtrations measure the failure of the bundle to admit a holomorphic structure. We study compatibility under the Chern isomorphism of these filtrations with the Hodge filtration on cohomology.

[1]  Martin Puchol,et al.  The first terms in the expansion of the Bergman kernel in higher degrees , 2012, 1210.1717.

[2]  Zhiqin Lu,et al.  Abstract Bergman kernel expansion and its applications , 2011 .

[3]  B. Berndtsson,et al.  A direct approach to Bergman kernel asymptotics for positive line bundles , 2008 .

[4]  X. Ma,et al.  Holomorphic Morse Inequalities and Bergman Kernels , 2007 .

[5]  Kefeng Liu,et al.  On the asymptotic expansion of Bergman kernel , 2004, math/0404494.

[6]  R. Berman Bergman kernels and local holomorphic Morse inequalities , 2002, math/0211235.

[7]  X. Ma,et al.  The spin $^{\bf c}$ Dirac operator on high tensor powers of a line bundle , 2001, math/0111138.

[8]  S. Donaldson Scalar Curvature and Projective Embeddings, I , 2001 .

[9]  S. Zelditch Szego kernels and a theorem of Tian , 2000, math-ph/0002009.

[10]  M. Vergne,et al.  Heat Kernels and Dirac Operators , 1992 .

[11]  G. Tian On a set of polarized Kähler metrics on algebraic manifolds , 1990 .

[12]  J. Bismut Demailly's asymptotic Morse inequalities: A heat equation proof , 1987 .

[13]  Lijin Wang Bergman kernel and stability of holomorphic vector bundles with sections , 2003 .

[14]  Xiaowei Wang Balance point and Stability of Vector Bundles Over a Projective Manifold , 2002 .

[15]  Thierry Bouche Asymptotic Results For Hermitian Line Bundles Over Complex Manifolds: The Heat Kernel Approach , 1999 .

[16]  D. Catlin The Bergman Kernel and a Theorem of Tian , 1999 .

[17]  E. Getzler An analogue of Demailly's inequality for strictly pseudoconvex CR manifolds , 1989 .

[18]  V. Guillemin,et al.  The Laplace operator on the nth tensor power of a line bundle: eigenvalues which are uniformly bounded in n , 1988 .

[19]  J. Demailly Champs magnétiques et inégalités de Morse pour la $d^{\prime \prime }$-cohomologie , 1985 .