Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output

This paper deals with ridge estimation of fuzzy multiple linear and nonlinear regression models with crisp inputs and Gaussian fuzzy output. Using ridge regression learning algorithm in the Lagrangian dual space, we describe a ridge estimation of fuzzy multiple linear regression model of Xu and Li (Fuzzy Sets and Systems 119 (2001) 215). It allows us to perform nonlinear regression for Xu and Li's model by constructing a fuzzy linear regression function in a high dimensional feature space. Experimental results are then presented which indicate the performance of this algorithm.

[1]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[2]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[3]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[4]  Carlo Bertoluzza,et al.  On a new class of distances between fuzzy numbers , 1995 .

[5]  P. Diamond,et al.  Extended fuzzy linear models and least squares estimates , 1997 .

[6]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[7]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[8]  Lucien Duckstein,et al.  Multi-objective fuzzy regression: a general framework , 2000, Comput. Oper. Res..

[9]  S. Gunn Support Vector Machines for Classification and Regression , 1998 .

[10]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[11]  Alexander Gammerman,et al.  Ridge Regression Learning Algorithm in Dual Variables , 1998, ICML.

[12]  Miin-Shen Yang,et al.  On a class of fuzzy c-numbers clustering procedures for fuzzy data , 1996, Fuzzy Sets Syst..

[13]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[14]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[15]  Ruoning Xu,et al.  Multidimensional least-squares fitting with a fuzzy model , 2001, Fuzzy Sets Syst..

[16]  Johan A. K. Suykens,et al.  Optimal control by least squares support vector machines , 2001, Neural Networks.