Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation
暂无分享,去创建一个
I. Turner | Fawang Liu | S. Shen | V. Anh
[1] G. Smith,et al. Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .
[2] W. Wyss. The fractional diffusion equation , 1986 .
[3] W. Schneider,et al. Fractional diffusion and wave equations , 1989 .
[4] I. Podlubny. Fractional differential equations , 1998 .
[5] R. Gorenflo,et al. Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .
[6] O. Agrawal. Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .
[7] R. Gorenflo,et al. Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .
[8] I. Turner,et al. Time fractional advection-dispersion equation , 2003 .
[9] Fawang Liu,et al. Numerical simulation for solute transport in fractal porous media , 2004 .
[10] Fawang Liu,et al. Numerical solution of the space fractional Fokker-Planck equation , 2004 .
[11] A Computationally Effective Numerical Method for the Fractional-order Bagley-Torvik Equation , 2004 .
[12] Fawang Liu,et al. The time fractional diffusion equation and the advection-dispersion equation , 2005, The ANZIAM Journal.
[13] F. Mainardi,et al. The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.