Robust Recovery of Positive Stream of Pulses

The problem of estimating the delays and amplitudes of a positive stream of pulses appears in many applications, such as single-molecule microscopy. This paper suggests estimating the delays and amplitudes using a convex program, which is robust in the presence of noise (or model mismatch). Particularly, the recovery error is proportional to the noise level. We further show that the error grows exponentially with the density of the delays and also depends on the localization properties of the pulse.

[1]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[2]  Hrushikesh Narhar Mhaskar,et al.  On the Problem of Parameter Estimation in Exponential Sums , 2012 .

[3]  Daniel Potts,et al.  Nonlinear Approximation by Sums of Exponentials and Translates , 2011, SIAM J. Sci. Comput..

[4]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[5]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[6]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[7]  Wenjing Liao,et al.  MUSIC for Multidimensional Spectral Estimation: Stability and Super-Resolution , 2015, IEEE Transactions on Signal Processing.

[8]  Emmanuel J. Candès,et al.  Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..

[9]  Daniel Potts,et al.  Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..

[10]  Yonina C. Eldar,et al.  Sub-Nyquist Radar via Doppler Focusing , 2012, IEEE Transactions on Signal Processing.

[11]  Gabriel Peyré,et al.  Support Recovery for Sparse Deconvolution of Positive Measures , 2015, ArXiv.

[12]  Shai Dekel,et al.  Robust Recovery of Stream of Pulses using Convex Optimization , 2014, ArXiv.

[13]  Albert Fannjiang,et al.  Compressive Spectral Estimation with Single-Snapshot ESPRIT: Stability and Resolution , 2016, ArXiv.

[14]  Laurent Demanet,et al.  The recoverability limit for superresolution via sparsity , 2015, ArXiv.

[15]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[16]  Shai Dekel,et al.  Exact Recovery of Dirac Ensembles from the Projection Onto Spaces of Spherical Harmonics , 2014, ArXiv.

[17]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[18]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[19]  Pina Marziliano,et al.  Spherical finite rate of innovation theory for the recovery of fiber orientations , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[20]  Jean-Jacques Fuchs,et al.  Sparsity and uniqueness for some specific under-determined linear systems , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[21]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[22]  Parikshit Shah,et al.  Compressive sensing off the grid , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[23]  Gabriel Peyré,et al.  Support Recovery for Sparse Super-Resolution of Positive Measures , 2017 .

[24]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Shai Dekel,et al.  Exact recovery of non-uniform splines from the projection onto spaces of algebraic polynomials , 2014, J. Approx. Theory.

[26]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[27]  Y. Garini,et al.  Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. , 2009, Physical review letters.

[28]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[29]  Yonina C. Eldar,et al.  Compressed Beamforming in Ultrasound Imaging , 2012, IEEE Transactions on Signal Processing.

[30]  PeyréGabriel,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2015 .

[31]  Yonina C. Eldar,et al.  Innovation Rate Sampling of Pulse Streams With Application to Ultrasound Imaging , 2010, IEEE Transactions on Signal Processing.

[32]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[33]  D. Potts,et al.  Parameter estimation for multivariate exponential sums , 2011 .

[34]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[35]  Shai Dekel,et al.  Stable Support Recovery of Stream of Pulses With Application to Ultrasound Imaging , 2015, IEEE Transactions on Signal Processing.

[36]  Benjamin Recht,et al.  Superresolution without separation , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[37]  F. Filbir,et al.  Exact Recovery of Discrete Measures from Wigner D-Moments , 2016, ArXiv.

[38]  Torsten Söderström,et al.  Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies , 1991, IEEE Trans. Signal Process..

[39]  Y. D. Castro,et al.  Non-uniform spline recovery from small degree polynomial approximation , 2014, 1402.5662.

[40]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[41]  Amir Beck,et al.  Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications with MATLAB , 2014, MOS-SIAM Series on Optimization.

[42]  Shai Dekel,et al.  Super-Resolution on the Sphere Using Convex Optimization , 2014, IEEE Transactions on Signal Processing.

[43]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[44]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[45]  A. Ouamri,et al.  Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds , 1989, IEEE Trans. Acoust. Speech Signal Process..

[46]  Gabriel Peyré,et al.  Sparse Spikes Deconvolution on Thin Grids , 2015, ArXiv.

[47]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[48]  Yonina C. Eldar,et al.  Recovery of Sparse Positive Signals on the Sphere from Low Resolution Measurements , 2015, IEEE Signal Processing Letters.

[49]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[50]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[51]  Badri Narayan Bhaskar,et al.  Compressed Sensing o the Grid , 2013 .

[52]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[53]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..