The role of Bcl-2 family members in the progression of cutaneous melanoma

[1]  M A Weinstock,et al.  Epidemiology of melanoma. , 2017, Cancer treatment and research.

[2]  H. Yoshida,et al.  [Machinery of programmed cell death]. , 2005, Nihon rinsho. Japanese journal of clinical medicine.

[3]  D. Rimm,et al.  Tissue microarray‐based analysis shows phospho‐β‐catenin expression in malignant melanoma is associated with poor outcome , 2003, International journal of cancer.

[4]  L. Chin,et al.  Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  L. Frati,et al.  Survivin, bcl-2, bax, and bcl-X gene expression in sentinel lymph nodes from melanoma patients. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  K. Rich,et al.  Down‐regulation of Bcl‐2 and Bcl‐xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death , 2003, Journal of neurochemistry.

[7]  Matt van de Rijn,et al.  Tissue Microarrays Are an Effective Quality Assurance Tool for Diagnostic Immunohistochemistry , 2002, Modern Pathology.

[8]  H. Pehamberger,et al.  Antitumor effect of G3139 Bcl-2 antisense oligonucleotide is independent of its immune stimulation by CpG motifs in SCID mice. , 2002, Antisense & nucleic acid drug development.

[9]  Hua Yu,et al.  Roles of activated Src and Stat3 signaling in melanoma tumor cell growth , 2002, Oncogene.

[10]  L. Worley,et al.  Transducible peptide therapy for uveal melanoma and retinoblastoma. , 2002, Archives of ophthalmology.

[11]  J. Gu,et al.  Bax-induction gene therapy of pancreatic cancer. , 2002, The Journal of surgical research.

[12]  M. Bally,et al.  Subcellular trafficking of antisense oligonucleotides and down-regulation of bcl-2 gene expression in human melanoma cells using a fusogenic liposome delivery system. , 2002, Nucleic acids research.

[13]  C. Riebeling,et al.  The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro , 2002, British Journal of Cancer.

[14]  J. Gu,et al.  A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene expression and cell killing in vitro and in vivo , 2002, Oncogene.

[15]  S. Shangary,et al.  Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-x(L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. , 2002, Biochemistry.

[16]  D. Ribatti,et al.  Bcl-2 Overexpression in Human Melanoma Cells Increases Angiogenesis through Vegf Mrna Stabilization and Hif-1-mediated Transcriptional Activity , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  Sridhar Ramaswamy,et al.  Bcl2 Regulation by the Melanocyte Master Regulator Mitf Modulates Lineage Survival and Melanoma Cell Viability , 2002, Cell.

[18]  A. Gillum,et al.  Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. , 2002, Antisense & nucleic acid drug development.

[19]  Y. Collan,et al.  Immunohistochemically Detectable Bcl-2 Expression in Metastatic Melanoma: Association with Survival and Treatment Response , 2002, Oncology.

[20]  H. Wajant,et al.  The Fas Signaling Pathway: More Than a Paradigm , 2002, Science.

[21]  H. Pehamberger,et al.  Bcl‐XL is a chemoresistance factor in human melanoma cells that can be inhibited by antisense therapy , 2002, International journal of cancer.

[22]  K. Smalley,et al.  Farnesyl thiosalicylic acid inhibits the growth of melanoma cells through a combination of cytostatic and pro‐apoptotic effects , 2002, International journal of cancer.

[23]  R. Dummer,et al.  Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. , 2002, The Journal of investigative dermatology.

[24]  Y. Tsujimoto Bcl-2 Family of Proteins: Life-or-Death Switch in Mitochondria , 2002, Bioscience reports.

[25]  L. Skoog,et al.  Expression of CD40, CD44, bcl‐2 antigens and rate of cell proliferation on fine needle aspirates from metastatic melanoma , 2002, Cytopathology : official journal of the British Society for Clinical Cytology.

[26]  P. Fisher,et al.  The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells , 2002, Oncogene.

[27]  J. Roth,et al.  A Recombinant Adenovirus Expressing Wild-Type Bax Induces Apoptosis in Prostate Cancer Cells Independently of Their Bcl-2 Status and Androgen Sensitivity , 2002, Cancer biology & therapy.

[28]  J. Utikal,et al.  Expression of c-myc and bcl-2 in Primary and Advanced Cutaneous Melanoma , 2002, Cancer investigation.

[29]  K. Gatter,et al.  Ki67 protein: the immaculate deception? , 2002, Histopathology.

[30]  H. Zhang,et al.  Expression of oncogenes, tumour suppressor, mismatch repair and apoptosis-related genes in primary and metastatic melanoma cells. , 2001, International journal of oncology.

[31]  R. Dummer,et al.  Report on the Eighth World Congress on Cancers of the Skin 18-21 July 2001, Zurich, Switzerland. , 2001, Melanoma research.

[32]  J. Eberle,et al.  The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. , 2001, The Journal of investigative dermatology.

[33]  F. Zunino,et al.  Cleavage of Bcl-2 in oxidant- and cisplatin-induced apoptosis of human melanoma cells , 2001, Oncogene.

[34]  T. Cotter,et al.  Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bcl-2 interactions , 2001, British Journal of Cancer.

[35]  H M Rosenberg,et al.  Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. , 2001, Journal of the National Cancer Institute.

[36]  J. Hansson,et al.  Cisplatin Induces the Proapoptotic Conformation of Bak in a ΔMEKK1-Dependent Manner , 2001, Molecular and Cellular Biology.

[37]  B. Loggini,et al.  Immunohistochemical Study of 49 Cutaneous Melanomas: P53, PCNA, Bcl-2 Expression and Multidrug Resistance , 2001, Tumori.

[38]  U. Zangemeister‐Wittke,et al.  p53-Independent induction of apoptosis in human melanoma cells by a bcl-2/bcl-xL bispecific antisense oligonucleotide. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[39]  C. Balch New melanoma staging system , 2001, Journal of the National Cancer Institute.

[40]  R. Stahel,et al.  Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. , 2001, Journal of the National Cancer Institute.

[41]  P. Hersey,et al.  Relative resistance of fresh isolates of melanoma to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[42]  J. Kirkwood,et al.  Tumor necrosis factor-alpha-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome c release mediate resistance of mature dendritic cells to melanoma-induced apoptosis. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[43]  R. Fine,et al.  Formation of nuclear Bax/p53 complexes is associated with chemotherapy induced apoptosis , 2000, Oncogene.

[44]  J M Trent,et al.  The genetics of cutaneous melanoma. , 2000, Clinics in laboratory medicine.

[45]  H. Pehamberger,et al.  Chemosensitisation of malignant melanoma by BCL2 antisense therapy , 2000, The Lancet.

[46]  D. Becker,et al.  Telomerase activity and expression of apoptosis and anti-apoptosis regulators in the progression pathway of human melanoma. , 2000, International journal of oncology.

[47]  F. Natt,et al.  A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[48]  R. Schmid,et al.  Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma , 2000, Archives of Dermatological Research.

[49]  J. McNiff,et al.  Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. , 1999, The Journal of investigative dermatology.

[50]  S. Legha,et al.  Uveal melanoma: natural history and treatment options for metastatic disease. , 1999, Melanoma research.

[51]  F. Gruijl Skin cancer and solar UV radiation , 1999 .

[52]  J. Radhi Malignant Melanoma Arising from Nevi, p53, p16, and Bcl-2: Expression in Benign versus Malignant Components , 1999, Journal of cutaneous medicine and surgery.

[53]  C. Borner,et al.  Mutated N-ras upregulates Bcl-2 in human melanoma in vitro and in SCID mice. , 1999, Melanoma research.

[54]  A. Albino,et al.  Update of diagnostic and prognostic markers in cutaneous malignant melanoma. , 1999, Dermatologic clinics.

[55]  F. Mitjans,et al.  Integrin αVβ3 Promotes M21 Melanoma Growth in Human Skin by Regulating Tumor Cell Survival , 1999 .

[56]  J. Lambert,et al.  Melanocyte biology and its implications for the clinician. , 1999, European journal of dermatology : EJD.

[57]  D. McConkey,et al.  CREB and Its Associated Proteins Act as Survival Factors for Human Melanoma Cells* , 1998, The Journal of Biological Chemistry.

[58]  V. Dixit,et al.  Death receptors: signaling and modulation. , 1998, Science.

[59]  S. Cory,et al.  The Bcl-2 protein family: arbiters of cell survival. , 1998, Science.

[60]  J. Reed,et al.  Expression of apoptosis regulators in cutaneous malignant melanoma. , 1998, Clinical cancer research : an official journal of the American Association for Cancer Research.

[61]  H. Pehamberger,et al.  Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines , 1998, Melanoma research.

[62]  J. Bolognia,et al.  What's new in the treatment of cutaneous melanoma? , 1998, Seminars in cutaneous medicine and surgery.

[63]  J. Turunen,et al.  Prognostic value of biomarkers in malignant melanoma , 1998, Melanoma research.

[64]  C. Miracco,et al.  Different patterns of cell proliferation and death and oncogene expression in cutaneous malignant melanoma , 1998, Journal of cutaneous pathology.

[65]  H. Pehamberger,et al.  bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice , 1998, Nature Medicine.

[66]  C. Leonetti,et al.  c-myc antisense oligodeoxynucleotides enhance the efficacy of cisplatin in melanoma chemotherapy in vitro and in nude mice. , 1998, Cancer Research.

[67]  O. Larsson,et al.  Immunohistochemical markers for distinguishing Spitz nevi from malignant melanomas. , 1997, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[68]  I. Fidler,et al.  Nitric oxide-mediated apoptosis of K-1735 melanoma cells is associated with downregulation of Bcl-2 , 1997, Oncogene.

[69]  John Calvin Reed,et al.  Anti-cell death activity promotes pulmonary metastasis of melanoma cells , 1997, Oncogene.

[70]  J. Jenrette Malignant melanoma: the role of radiation therapy revisited. , 1996, Seminars in oncology.

[71]  G. Wilson,et al.  Bcl-2 expression in malignant melanoma and its prognostic significance. , 1996, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[72]  M. Ichihashi,et al.  Accelerated disappearance of melanocytes in bcl-2-deficient mice. , 1996, Cancer research.

[73]  W. White,et al.  Intercellular Adhesion Molecule 1 (ICAM‐1) and bcl‐2 Are Differentially Expressed in Early Evolving Malignant Melanoma , 1995, The American Journal of dermatopathology.

[74]  M. Rijn,et al.  bcl-2 expression in primary malignancies of the skin. , 1995, Archives of dermatology.

[75]  M. van de Rijn,et al.  bcl-2 expression in melanocytic nevi. Insights into the biology of dermal maturation. , 1995, Archives of dermatology.

[76]  D. Strunk,et al.  Human melanocytes and melanoma cells constitutively express the Bcl-2 proto-oncogene in situ and in cell culture. , 1995, The American journal of pathology.

[77]  John Calvin Reed,et al.  Immunohistochemical analysis of Bcl-2 protein regulation in cutaneous melanoma. , 1995, The American journal of pathology.

[78]  H. Kerl,et al.  bcl‐2 Protein Expression in Cutaneous Malignant Melanoma and Benign Melanocytic Nevi , 1995, The American Journal of dermatopathology.

[79]  L. From,et al.  bcl-2 protein expression in melanocytic neoplasms of the skin. , 1995, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[80]  C. Shea,et al.  Immunohistochemical expression of BCL‐2 in melanomas and intradermal nevi , 1994, Journal of cutaneous pathology.

[81]  John Calvin Reed,et al.  Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. De Ley,et al.  Bcl-2 expression in human melanocytes and melanocytic tumors. , 1994, The American journal of pathology.

[83]  C. Thompson,et al.  bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death , 1993, Cell.

[84]  A. Haake,et al.  Keratinocytes regulate melanocyte number in human fetal and neonatal skin equivalents. , 1991, The Journal of investigative dermatology.

[85]  A Breslow,et al.  Thickness, Cross‐Sectional Areas and Depth of Invasion in the Prognosis of Cutaneous Melanoma , 1970, Annals of surgery.

[86]  W. Clark,et al.  The histogenesis and biologic behavior of primary human malignant melanomas of the skin. , 1969, Cancer research.

[87]  D. Whiteman,et al.  Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies , 2004, Cancer Causes & Control.

[88]  Qiang Xu,et al.  Quercetin inhibits the invasion and mobility of murine melanoma B16-BL6 cells through inducing apoptosis via decreasing Bcl-2 expression , 2004, Clinical & Experimental Metastasis.

[89]  Michael Weller,et al.  Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo , 2002, Nature Medicine.

[90]  Jean-Claude Martinou,et al.  Breaking the mitochondrial barrier , 2001, Nature Reviews Molecular Cell Biology.

[91]  U. Brinck,et al.  Bcl2 and Bax expression in naevi and melanomas and their relation to ploidy status and proliferation. , 1999, Polish journal of pathology : official journal of the Polish Society of Pathologists.

[92]  F. Mitjans,et al.  Integrin alpha(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. , 1999, Cancer research.

[93]  F. D. de Gruijl Skin cancer and solar UV radiation. , 1999, European journal of cancer.