The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance

Abstract Research funded by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has led to significant improvements in longwave radiative transfer modeling over the last decade. These improvements, which have generally come in small incremental changes, were made primarily in the water vapor self- and foreign-broadened continuum and the water vapor absorption line parameters. These changes, when taken as a whole, result in up to a 6 W m−2 improvement in the modeled clear-sky downwelling longwave radiative flux at the surface and significantly better agreement with spectral observations. This paper provides an overview of the history of ARM with regard to clear-sky longwave radiative transfer, and analyzes remaining related uncertainties in the ARM state-of-the-art Line-by-Line Radiative Transfer Model (LBLRTM). A quality measurement experiment (QME) for the downwelling infrared radiance at the ARM Southern Great Plains site has been ongoing since 1994. This experiment has three...

[1]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[2]  N. Scott,et al.  Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—A Workshop Summary , 1985 .

[3]  Hans J. Liebe,et al.  Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling , 1987 .

[4]  H. B. Howell,et al.  Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder. , 1988, Applied optics.

[5]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[6]  Robert G. Ellingson,et al.  The Intercomparison of Radiation Codes in Climate Models , 1991 .

[7]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[8]  R. H. Tipping,et al.  A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III , 1992 .

[9]  James D. Spinhirne,et al.  Micro pulse lidar , 1993, IEEE Trans. Geosci. Remote. Sens..

[10]  S. H. Melfi,et al.  Observations of water vapor by ground-based microwave radiometers and Raman lidar , 1994 .

[11]  S. Schwartz,et al.  The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed , 1994 .

[12]  M. Iacono,et al.  Line‐by‐line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons , 1995 .

[13]  H. Revercomb,et al.  Atmospheric emitted radiance interferometer: Status and water vapor continuum results , 1995 .

[14]  W. J. Lafferty,et al.  Experimental Investigation of the Self{ and N 2 {broadened Continuum within the 2 Band of Water Vapor , 2022 .

[15]  J. C. Liljegren,et al.  Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. southern Great Plains , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[16]  W. Wiscombe,et al.  The Spectral Radiance Experiment (SPECTRE): Project Description and Sample Results , 1996 .

[17]  Shepard A. Clough,et al.  Infrared spectral radiance measurements in the tropical Pacific atmosphere , 1997 .

[18]  B. Whitney,et al.  Atmospheric Emitted Radiance Interferometer Part II : Water Vapor and Atmospheric Aerosols , 1997 .

[19]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[20]  R. Ellingson,et al.  Comparison of Recalibrated Atmospheric Emitted Radiance Interferometer Observations with Line-by-Line Radiative Transfer Model Calculations , 1997 .

[21]  R. Ellingson,et al.  Comparisons of Surface Longwave Radiance Between Line-by-Line Radiative Transfer Model and Atmospheric Emitted Radiance Interferometer Observations from the Atmospheric Radiation Measurement Program , 1998 .

[22]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.

[23]  J. Goldsmith,et al.  Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. , 1997, Applied optics.

[24]  P. Rosenkranz Water vapor microwave continuum absorption: A comparison of measurements and models , 1998 .

[25]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[26]  P. Brown,et al.  The Status of Quality Measurement Experiments in the Microwave , Longwave , and Shortwave , 1998 .

[27]  Toth,et al.  Water Vapor Measurements between 590 and 2582 cm-1: Line Positions and Strengths. , 1998, Journal of molecular spectroscopy.

[28]  Shepard A. Clough,et al.  Effect on the Calculated Spectral Surface Radiances Due to MWR Scaling of Sonde Water Vapor Profiles , 1999 .

[29]  B. Lesht,et al.  Reanalysis of Radiosonde Data from the 1996 and 1997 Water Vapor Intensive Observation Periods: Application of the Vaisala RS-80H Contamination Correction Algorithm to Dual-Sonde Soundings , 1999 .

[30]  Raymond K. Garcia,et al.  Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26μm , 1999 .

[31]  David D. Turner,et al.  Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 Water Vapor Intensive Observation Periods , 1999 .

[32]  A. C. Riddle,et al.  Ground-Based Remote Sensor Observations during PROBE in the Tropical Western Pacific , 1999 .

[33]  Shepard A. Clough,et al.  Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3 , 2000 .

[34]  J. Warner,et al.  A New Narrowband Radiation Model for Water Vapor Absorption , 2000 .

[35]  David B. Parsons,et al.  Thermodynamic and Radiative Impact of the Correction of Sounding Humidity Bias in the Tropics , 2000 .

[36]  Yong Han,et al.  Analysis and improvement of tipping calibration for ground-based microwave radiometers , 2000, IEEE Trans. Geosci. Remote. Sens..

[37]  Toth Air- and N(2)-Broadening Parameters of Water Vapor: 604 to 2271 cm(-1). , 2000, Journal of molecular spectroscopy.

[38]  P. Minnett,et al.  The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer , 2001 .

[39]  David Carlson,et al.  Corrections of Humidity Measurement Errors from the Vaisala RS80 Radiosonde—Application to TOGA COARE Data , 2002 .

[40]  J. Drummond,et al.  Cavity ringdown spectroscopy measurements of the infrared water vapor continuum , 2002 .

[41]  David D. Turner,et al.  Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar , 2002 .

[42]  S. Newman,et al.  Impact of updates to the HITRAN spectroscopic database on the modeling of clear‐sky infrared radiances , 2002 .

[43]  Shepard A. Clough,et al.  Analysis of the AERI/LBLRTM QME , 2002 .

[44]  J. Curry,et al.  Surface Heat Budget of the Arctic Ocean , 2002 .

[45]  L. Pietrafesa,et al.  Evidence of the Gulf Stream's influence on tropical cyclone intensity , 2002 .

[46]  S. Clough,et al.  Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience , 2003 .

[47]  S. Clough,et al.  Validation of CO2 line parameters used in temperature retrievals , 2003 .

[48]  Shepard A. Clough,et al.  The ARM program's water vapor intensive observation periods - Overview, initial accomplishments, and future challenges , 2003 .

[49]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[50]  S. Oltmans,et al.  In Situ Validation of a Correction for Time-Lag and Bias Errors in Vaisala RS80-H Radiosonde Humidity Measurements , 2003 .

[51]  T. Hewison,et al.  Water vapour line and continuum absorption in the thermal infrared—reconciling models and observations , 2003 .

[52]  William L. Smith,et al.  Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design , 2004 .

[53]  J. C. Liljegren,et al.  Residual Analysis of Surface Spectral Radiances Between Instrument Observations and Line-by-Line Calculations , 2022 .