Phytoplankton functional type modelling: Running before we can walk? A critical evaluation of the current state of knowledge

In the context of aquatic biogeochemical modelling, there is an increasing pressure to explicitly treat multiple biogeochemical cycles and to increase the functional diversity of biotic communities. In this study, we evaluate the capacity of 124 aquatic biogeochemical models to reproduce the dynamics of phytoplankton functional groups. Our analysis reinforces earlier findings that aquatic ecosystem modellers do not seem to consistently apply conventional methodological steps during the development of their models. Although there is an improvement relative to earlier critiques, significant portion of published studies did not properly assess model sensitivity to input vectors; aquatic ecosystem modellers are still reluctant to embrace optimization techniques during model calibration; and assess the ability of their models to support predictions in the extrapolation domain. We also found significant variability with respect to the mathematical representation of key physiological processes (e.g., growth strategies, nutrient kinetics, settling velocities) as well as group-specific characterizations typically considered in the pertinent literature. Cyanobacteria blooms are a major concern for water industries as they represent high risk for human health and economic costs for drinking water treatment, and thus one of the outstanding challenges is to offer credible modelling tools that can serve as early warning systems to assist with the operational control of cyanobacteria blooms. Our study suggests that the derivation of distinct functional groups from fairly heterogeneous planktonic assemblages poses challenging problems. Because of the still poorly understood ecology, we do not have robust group-specific parameterizations that can support predictions in a wide array of spatiotemporal domains. In this context, we argue that the most prudent strategies are the gradual incorporation of complexity, where possible and relevant, along with an open dialogue on how we can mathematically depict the interconnections among different phytoplankton subunits or even how we can frame the suitable data collection efforts.

[1]  Y. Sin,et al.  Ecosystem modeling analysis of size-structured phytoplankton dynamics in the York River estuary, Virginia (USA). I. Development of a plankton ecosystem model with explicit feedback controls and hydrodynamics , 2002 .

[2]  J. Zehr Nitrogen fixation by marine cyanobacteria. , 2011, Trends in microbiology.

[3]  K. Wirtz Mechanistic origins of variability in phytoplankton dynamics: Part I: niche formation revealed by a size-based model , 2013 .

[4]  Ä. Bilaletdin,et al.  Modelling phytoplankton dynamics of the eutrophic Lake Võrtsjärv, Estonia , 1999, Hydrobiologia.

[5]  A. Konopka,et al.  Buoyancy Regulation in a Strain of Aphanizomenon flos-aquae (Cyanophyceae): the Importance of Carbohydrate Accumulation and Gas Vesicle Collapse , 1986 .

[6]  D. G. George,et al.  Using a numerical model (PROTECH) to examine the impact of water transfers on phytoplankton dynamics in a Mediterranean reservoir , 2007, Limnetica.

[7]  P. Burkill,et al.  Transformation of dimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with an examination of key processes via a modelling approach , 2002 .

[8]  S. Watson,et al.  New Microcystin Concerns in the Lower Great Lakes , 2003 .

[9]  Donald C. Pierson,et al.  Weather driven influences on phytoplankton succession in a shallow lake during contrasting years: Application of PROTBAS , 2007 .

[10]  P. Leavitt,et al.  Experimental evidence that pollution with urea can degrade water quality in phosphorus‐rich lakes of the Northern Great Plains , 2010 .

[11]  A. Walsby,et al.  The Contribution of Photosynthate to Turgor Pressure Rise in the Planktonic Blue-green Alga Anabaena flos-aquae , 1977 .

[12]  L. Legendre,et al.  Effects of pelagic food-web interactions and nutrient remineralization on the biogeochemical cycling of carbon: a modeling approach , 2000 .

[13]  Marjorie A. M. Friedrichs,et al.  Ecosystem model complexity versus physical forcing: Quantification of their relative impact with assimilated Arabian Sea data , 2006 .

[14]  A. E. Irish,et al.  The ecological basis for simulating phytoplankton responses to environmental change (PROTECH) , 2001 .

[15]  M. T. Arts,et al.  Seasonal patterns of total and energy reserve lipids of dominant zooplanktonic crustaceans from a hyper-eutrophic lake , 1992, Oecologia.

[16]  George B. Arhonditsis,et al.  Evaluation of the current state of distributed watershed nutrient water quality modeling. , 2015, Environmental science & technology.

[17]  John Parslow,et al.  Biogeochemical marine ecosystem models II: the effect of physiological detail on model performance , 2004 .

[18]  George B. Arhonditsis,et al.  Eutrophication Risk Assessment in Hamilton Harbour: System Analysis and Evaluation of Nutrient Loading Scenarios , 2010 .

[19]  G. Vargo,et al.  Saharan Dust and Phosphatic Fidelity: A Three-Dimensional Biogeochemical Model of Trichodesmium as a Nutrient Source for Red Tides on the West Florida Shelf , 2008 .

[20]  A. H. Taylor,et al.  Seasonal succession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen , 1993 .

[21]  Alessandro Oggioni,et al.  A biogeochemical model of Lake Pusiano (North Italy) and its use in the predictability of phytoplankton blooms: first preliminary results , 2006 .

[22]  J. G. Baretta-Bekker,et al.  Testing the microbial loop concept by comparing mesocosm data with results from a dynamical simulation model , 1994 .

[23]  J. Allen A modelling study of ecosystem dynamics and nutrient cycling in the Humber plume UK , 1997 .

[24]  A. Konopka,et al.  Buoyancy regulation in light-limited continuous cultures of Microcystis aeruginosa , 1988 .

[25]  J. Elliott,et al.  Phytoplankton modelling of Lake Erken, Sweden by linking the models PROBE and PROTECH , 2007 .

[26]  E. Bellinger,et al.  Application of SEM XRMA data to lake ecosystem modelling , 1998 .

[27]  David P. Hamilton,et al.  Modelling the response of a highly eutrophic lake to reductions in external and internal nutrient loading , 2011 .

[28]  A. Howard,et al.  Modelling the growth and movement of cyanobacteria in river systems. , 2006, The Science of the total environment.

[29]  H. Böhme Regulation of nitrogen fixation in heterocyst-forming cyanobacteria , 1998 .

[30]  G. Arhonditsis,et al.  Modelling the role of highly unsaturated fatty acids in planktonic food web processes: a mechanistic approach , 2012 .

[31]  Thomas R. Anderson,et al.  When is a biogeochemical model too complex? Objective model reduction and selection for North Atlantic time-series sites , 2013 .

[32]  J. M. Lenes Saharan dust and phosphatic fidelity: A three dimensional biogeochemical model of Trichodesmium on the West Florida shelf , 2006 .

[33]  Modelling the response of phytoplankton in a shallow lake (Loch Leven, UK) to changes in lake retention time and water temperature , 2012, Hydrobiologia.

[34]  Watson W. Gregg,et al.  Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model , 2003 .

[35]  Carl W. Chen Concepts and Utilities of Ecologic Model , 1970 .

[36]  J. G. Baretta-Bekker,et al.  The primary production module in the marine ecosystem model ERSEM II, with emphasis on the light forcing , 1997 .

[37]  J. Jolliff,et al.  A 1-D simulation analysis of the development and maintenance of the 2001 red tide of the ichthyotoxic dinoflagellate Karenia brevis on the West Florida shelf , 2012 .

[38]  E. Blumwald Regulation of nitrogen fixation in heterocyst-forming cyanobacteria , 2022 .

[39]  B. Penta,et al.  Predictive Ecological Modeling of Harmful Algal Blooms , 2001 .

[40]  Wu-Seng Lung,et al.  Modeling blue-green algal blooms in the lower neuse river , 1988 .

[41]  I. Persson,et al.  Simulation of a biogeochemical model in different lakes , 2003 .

[42]  S. Carpenter,et al.  Species Compensation and Complementarity in Ecosystem Function , 1995 .

[43]  David P. Hamilton,et al.  A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel , 2006 .

[44]  L. Stal,et al.  Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans , 2003, Nature.

[45]  Francisco J. Rueda,et al.  A calibration strategy for dynamic succession models including several phytoplankton groups , 2011, Environ. Model. Softw..

[46]  Ferdi L. Hellweger,et al.  Agent‐based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir , 2008 .

[47]  Inga Hense,et al.  Towards a model of cyanobacteria life cycle—effects of growing and resting stages on bloom formation of N2-fixing species , 2006 .

[48]  V. Lakshmi Useless Arithmetic: Why Environmental Scientists Can't Predict the Future , 2007 .

[49]  D. Roelke,et al.  Modeling of plankton community dynamics characterized by algal toxicity and allelopathy: A focus on historical Prymnesium parvum blooms in a Texas reservoir , 2012 .

[50]  Lars Ravn-Jonsen A Size-Based Ecosystem Model , 2009 .

[51]  Heikki Haario,et al.  Bayesian modelling of algal mass occurrences - using adaptive MCMC methods with a lake water quality model , 2007, Environ. Model. Softw..

[52]  P. Ruardij,et al.  The European regional seas ecosystem model, a complex marine ecosystem model , 1995 .

[53]  T. Aldenberg,et al.  Modelling phosphorus fluxes in the hypertrophic Loosdrecht Lakes , 1990, Hydrobiological Bulletin.

[54]  H. Meier,et al.  On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; A model study , 2009 .

[55]  M. Dokulil,et al.  Cyanobacterial dominance in lakes , 2000, Hydrobiologia.

[56]  J. R. Romero,et al.  One- and three-dimensional biogeochemical simulations of two differing reservoirs , 2004 .

[57]  Hongwei Fang,et al.  Application of a three-dimensional eutrophication model for the Beijing Guanting Reservoir, China , 2011 .

[58]  Wolfgang Fennel,et al.  Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment , 2002 .

[59]  Dennis Trolle,et al.  Predicting the effects of reduced external nitrogen loading on the nitrogen dynamics and ecological state of deep Lake Ravn, Denmark, using the DYRESM–CAEDYM model , 2008 .

[60]  Linda May,et al.  The sensitivity of phytoplankton in Loch Leven (U.K.) to changes in nutrient load and water temperature , 2007 .

[61]  Michael L. Pace,et al.  Allometric Theory: Extrapolations from Individuals to Communities , 1993 .

[62]  L. Bruce,et al.  The role of zooplankton in the ecological succession of plankton and benthic algae across a salinity gradient in the Shark Bay solar salt ponds , 2009, Hydrobiologia.

[63]  Mridul K. Thomas,et al.  Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton , 2012 .

[64]  S. Jørgensen,et al.  Development of a structurally dynamic model for forecasting the effects of restoration of Lake Fure, Denmark , 2006 .

[65]  S. Niiranen,et al.  Ecosystem flow dynamics in the Baltic Proper-Using a multi-trophic dataset as a basis for food-web modelling , 2012 .

[66]  W. Mooij,et al.  A general one-dimensional vertical ecosystem model of Lake Shira (Russia, Khakasia): description, parametrization and analysis , 2010, Aquatic Ecology.

[67]  J. Huisman,et al.  Summer heatwaves promote blooms of harmful cyanobacteria , 2008 .

[68]  Jerry Blackford,et al.  Ecosystem dynamics at six contrasting sites: a generic modelling study , 2004 .

[69]  Mike Ashworth,et al.  A highly spatially resolved ecosystem model for the North West European Continental Shelf , 2001 .

[70]  Karen Helen Wiltshire,et al.  Long-term shifts in marine ecosystem functioning detected by inverse modeling of the Helgoland Roads time-series , 2005 .

[71]  Weitao Zhang,et al.  Predicting the Frequency of Water Quality Standard Violations Using Bayesian Calibration of Eutrophication Models , 2008 .

[72]  Kevin R. Arrigo,et al.  A coupled ocean‐ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production , 2003 .

[73]  J. Goodman,et al.  CeKlotho opens a new road for investigation in worm aging , 2010, Aging.

[74]  J. Patočka,et al.  The toxins of Cyanobacteria. , 2001, Acta medica.

[75]  A. Konopka,et al.  REGULATION OF GAS VESICLE CONTENT AND BUOYANCY IN LIGHT‐ OR PHOSPHATE‐LIMITED CULTURES OF APHANIZOMENON FLOS‐AQUAE (CYANOPHYTA) 1 , 1987 .

[76]  Watson W. Gregg,et al.  Modeling Coccolithophores in the Global Oceans , 2007 .

[77]  J. Walsh,et al.  A numerical analysis of carbon dynamics of the Southern Ocean phytoplankton community: the roles of light and grazing in effecting both sequestration of atmospheric CO2 and food availability to larval krill , 2001 .

[78]  Heikki Pitkänen,et al.  Evaluating the effects of nutrient load reductions on the biomass of toxic nitrogen-fixing cyanobacteria in the Gulf of Finland, Baltic Sea , 2001 .

[79]  George B. Arhonditsis,et al.  Optimizing the complexity of phytoplankton functional group modeling: An allometric approach , 2016, Ecol. Informatics.

[80]  Inga Hense,et al.  The representation of cyanobacteria life cycle processes in aquatic ecosystem models , 2010 .

[81]  P. Ralph,et al.  A dynamic model of the cellular carbon to chlorophyll ratio applied to a batch culture and a continental shelf ecosystem , 2013 .

[82]  M. Vichi,et al.  Sensitivity of a coupled physical–biological model to turbulence: high-frequency simulations in a northern Adriatic station , 2007 .

[83]  David P. Hamilton,et al.  Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management , 2011, Environ. Model. Softw..

[84]  Sven Erik Jørgensen,et al.  A structurally dynamic modelling—Lake Mogan, Turkey as a case study , 2003 .

[85]  David P. Hamilton,et al.  Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake , 2008 .

[86]  J. G. Baretta-Bekker,et al.  An improved model of carbon and nutrient dynamics in the microbial food web in marine enclosures , 1998 .

[87]  E. Hofmann,et al.  Simulations of Phytoplankton Species and Carbon Production in the Equatorial Pacific Ocean 1. Model Configuration and Ecosystem Dynamics , 2007 .

[88]  E. Boss,et al.  Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake , 2006, Hydrobiologia.

[89]  A. L. Huber,et al.  Factors Affecting the Germination of Akinetes of Nodularia spumigena (Cyanobacteriaceae) , 1985, Applied and environmental microbiology.

[90]  Rainer Brüggemann,et al.  Modelling life cycle and population dynamics of Nostocales (cyanobacteria) , 2011, Environ. Model. Softw..

[91]  Simone Colella,et al.  The Adriatic Sea ecosystem seasonal cycle: Validation of a three‐dimensional numerical model , 2007 .

[92]  J. Guckenheimer Dynamic model , 1989, Nature.

[93]  H. V. van Egmond,et al.  Toxins of cyanobacteria. , 2007, Molecular nutrition & food research.

[94]  Linda May,et al.  Using models to bridge the gap between land use and algal blooms: An example from the Loweswater catchment, UK , 2012, Environ. Model. Softw..

[95]  David W. Dilks,et al.  Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron , 2005 .

[96]  George B. Arhonditsis,et al.  Eutrophication model for Lake Washington (USA): Part I. Model description and sensitivity analysis , 2005 .

[97]  Hongyan Zhang,et al.  A two-dimensional ecological model of Lake Erie: Application to estimate dreissenid impacts on large lake plankton populations , 2008 .

[98]  O. Varis Cyanobacteria dynamics in a restored Finnish lake: a long term simulation study , 1993, Hydrobiologia.

[99]  David P. Hamilton,et al.  A spatially resolved model of seasonal variations in phytoplankton and clam (Tapes philippinarum) biomass in Barbamarco Lagoon, Italy , 2008 .

[100]  H. Jia,et al.  The development of a multi-species algal ecodynamic model for urban surface water systems and its application , 2010 .

[101]  W. Gregg Tracking the SeaWiFS record with a coupled physical/biogeochemical/radiative model of the global oceans , 2001 .

[102]  W. Long,et al.  Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model , 2012, Ocean Dynamics.

[103]  George B. Arhonditsis,et al.  Eutrophication model for Lake Washington (USA) Part II-model calibration and system dynamics analysis , 2005 .

[104]  Jørgen Salomonsen,et al.  Use of a lake model to examine exergy response to changes in phytoplankton growth parameters and species composition , 1996 .

[105]  Kevin J. Flynn,et al.  Reply to Horizons Article ‘Plankton functional type modelling: running before we can walk’ Anderson (2005): II. Putting trophic functionality into plankton functional types , 2006 .

[106]  H. Paerl,et al.  Blooms Like It Hot , 2008, Science.

[107]  V. J. Bierman,et al.  Modeling of Phytoplankton-Nutrient Dynamics in Saginaw Bay, Lake Huron , 1981 .

[108]  Hin-Fatt Cheong,et al.  A size-based ecosystem model for pelagic waters , 1998 .

[109]  J. G. Baretta-Bekker,et al.  Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake , 1997 .

[110]  David P. Hamilton,et al.  Time-scale dependence in numerical simulations: Assessment of physical, chemical, and biological predictions in a stratified lake at temporal scales of hours to months , 2012, Environ. Model. Softw..

[111]  David W. Schindler,et al.  Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function , 1990 .

[112]  Jacco C. Kromkamp,et al.  A computer model of buoyancy and vertical migration in cyanobacteria , 1990 .

[113]  Kevin J. Flynn,et al.  Castles built on sand : dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers , 2005 .

[114]  H. Fort,et al.  Use of a morphology‐based functional approach to model phytoplankton community succession in a shallow subtropical lake , 2013 .

[115]  J. Blackford,et al.  Changes in DMS production and flux in relation to decadal shifts in ocean circulation , 2006 .

[116]  Marcello Vichi,et al.  A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory , 2007 .

[117]  S. Adlerstein,et al.  Causes of Phytoplankton Changes in Saginaw Bay, Lake Huron, During the Zebra Mussel Invasion , 2009 .

[118]  W. Murdoch,et al.  Cyclic and Stable Populations: Plankton as Paradigm , 1987, The American Naturalist.

[119]  P. Reichert,et al.  Biogeochemical model of Lake Zurich: model equations and results , 2001 .

[120]  P. Franks,et al.  Size-structured planktonic ecosystems: constraints, controls and assembly instructions , 2010, Journal of plankton research.

[121]  Sven Erik Jørgensen,et al.  Examination of structurally dynamic eutrophication model , 2004 .

[122]  Corinne Le Quéré Reply to Horizons Article ‘Plankton functional type modelling: running before we can walk’ Anderson (2005): I. Abrupt changes in marine ecosystems? , 2006 .

[123]  J. Benndorf,et al.  Problems of application of the ecological model salmo to lakes and reservoirs having various trophic states , 1982 .

[124]  Tom Aldenberg,et al.  Fitting the dynamic model PCLake to a multi-lake survey through Bayesian Statistics , 1995 .

[125]  Marten Scheffer,et al.  Why plankton communities have no equilibrium: solutions to the paradox , 2004, Hydrobiologia.

[126]  M. Baird,et al.  A physiological model for the marine cyanobacteria , Trichodesmium , 2013 .

[127]  A. E. Irish,et al.  Modelling freshwater phytoplankton communities: an exercise in validation , 2000 .

[128]  M. Vichi,et al.  Seasonal modulation of microbially mediated carbon fluxes in the northern Adriatic Sea — a model study , 1998 .

[129]  Marten Scheffer,et al.  A strategy to improve the contribution of complex simulation models to ecological theory , 2005 .

[130]  G. Hurtt,et al.  A pelagic ecosystem model calibrated with BATS data , 1996 .

[131]  Craig A. Stow,et al.  Eutrophication risk assessment using Bayesian calibration of process-based models : application to a mesotrophic lake , 2007 .

[132]  C. Goldman,et al.  A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers , 2000, Nature.

[133]  O. Savchuk Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model , 2002 .

[134]  P. Reichert,et al.  Modelling functional groups of phytoplankton in three lakes of different trophic state , 2008 .

[135]  Matthew R. Hipsey,et al.  Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study , 2009 .

[136]  John Parslow,et al.  Modelling of nutrient impacts in Port Phillip Bay : a semi-enclosed marine Australian ecosystem , 1999 .

[137]  A. E. Irish,et al.  Modelling the effects of artificial mixing and copper sulphate dosing on phytoplankton in an Australian reservoir , 2003 .

[138]  James D. Bowen,et al.  A CE-QUAL-W2 Model of Neuse Estuary for Total Maximum Daily Load Development , 2003 .

[139]  Espen Strand,et al.  Stepwise building of plankton functional type (PFT) models: A feasible route to complex models? , 2010 .

[140]  Vanina Estrada,et al.  Determination of biogeochemical parameters in eutrophication models with simultaneous dynamic optimization approaches , 2009, Comput. Chem. Eng..

[141]  P. J. Radford,et al.  An 1-D vertically resolved modelling study of the ecosystem dynamics of the middle and southern Adriatic Sea , 1998 .

[142]  O. Kerimoglu,et al.  Role of phytoplankton cell size on the competition for nutrients and light in incompletely mixed systems. , 2012, Journal of theoretical biology.

[143]  Colin S. Reynolds,et al.  Towards a functional classification of the freshwater phytoplankton , 2002 .

[144]  D. Copetti,et al.  Planktothrix rubescens’ seasonal dynamics and vertical distribution in Lake Pusiano (North Italy) , 2005 .

[145]  John Siddorn,et al.  Turbulence as a control on the microbial loop in a temperate seasonally stratified marine systems model , 2004 .

[146]  Dong‐Kyun Kim,et al.  A commentary on the modelling of the causal linkages among nutrient loading, harmful algal blooms, and hypoxia patterns in Lake Erie , 2014 .

[147]  J. Janse,et al.  Modelling nutrient cycles in relation to food web structure in a biomanipulated shallow lake , 1995, Netherland Journal of Aquatic Ecology.

[148]  A. Konopka Buoyancy regulation and vertical migration by Oscillatoria rubescens in Crooked Lake, Indiana , 1982 .

[149]  T. W. Lewis,et al.  Spatial and Temporal Distribution of the Cyanotoxin Microcystin-LR in the Lake Ontario Ecosystem: Coastal Embayments, Rivers, Nearshore and Offshore, and Upland Lakes , 2009 .

[150]  D. L. Scarnecchia,et al.  Fundamentals of Ecological Modelling , 1995 .

[151]  J. Weis Species in Ecosystems , 1985 .

[152]  G. Weyhenmeyer,et al.  Lakes as sentinels of climate change , 2009, Limnology and oceanography.

[153]  Barbara A. Adams-Vanharn,et al.  Evaluation of the current state of mechanistic aquatic biogeochemical modeling: citation analysis and future perspectives. , 2006, Environmental science & technology.

[154]  M. Beniston The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations , 2004 .

[155]  J. Elliott,et al.  The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature , 2010 .

[156]  S. Chapra Surface Water-Quality Modeling , 1996 .

[157]  Peter Blomqvist,et al.  AMMONIUM-NITROGEN - A KEY REGULATORY FACTOR CAUSING DOMINANCE OF NON-NITROGEN-FIXING CYANOBACTERIA IN AQUATIC SYSTEMS , 1994 .

[158]  Baris Salihoglu,et al.  Influence of nutrient utilization and remineralization stoichiometry on phytoplankton species and carbon export: A modeling study at BATS , 2008 .

[159]  Momme Butenschön,et al.  Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf , 2012 .

[160]  C. Reynolds The Ecology of Phytoplankton , 2006 .

[161]  A. Navarra,et al.  A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. , 2007 .

[162]  Yerubandi R. Rao,et al.  Application of a eutrophication model for assessing water quality in Lake Winnipeg , 2012 .

[163]  I. Hoteit,et al.  Eastern Mediterranean biogeochemical flux model : simulations of the pelagic ecosystem , 2006 .

[164]  Sven Erik Jørgensen,et al.  State-of-the-art of ecological modelling with emphasis on development of structural dynamic models , 1999 .

[165]  Anthony E. Walsby,et al.  Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments , 1987 .

[166]  Md. Nazrul Islam,et al.  Numerical modeling on transition of dominant algae in Lake Kitaura, Japan , 2012 .

[167]  P. Burkill,et al.  Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonal forcing: the application of a generic model , 2002 .

[168]  W. Carmichael The toxins of cyanobacteria. , 1994, Scientific American.

[169]  J. Elliott,et al.  Predicting the impact of changing nutrient load and temperature on the phytoplankton of England’s largest lake, Windermere , 2012 .

[170]  J. Allen,et al.  Validation of a hydrodynamic-ecosystem model simulation with time-series data collected in the western English Channel , 2009 .

[171]  Richard G. Jones,et al.  Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes , 2005 .

[172]  Craig A. Stow,et al.  Evaluation of the current state of mechanistic aquatic biogeochemical modeling: citation analysis and future perspectives. , 2006 .

[173]  Wayne W. Carmichael,et al.  Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie , 2001 .

[174]  Paul J. Somerfield,et al.  Primary and bacterial production in the Mediterranean Sea: a modelling study , 2002 .

[175]  D. Roelke Copepod food-quality threshold as a mechanism influencing phytoplankton succession and accumulation of biomass, and secondary productivity: a modeling study with management implications , 2000 .

[176]  Eva Friis Møller,et al.  Ecosystem modelling across a salinity gradient from the North Sea to the Baltic Sea , 2011 .

[177]  R. Neves,et al.  A process-oriented model of pelagic biogeochemistry for marine systems. Part II: Application to a mesotidal estuary , 2012 .

[178]  S. Watson,et al.  Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes , 2008 .

[179]  M. Bonnet,et al.  Numerical modelling of the planktonic succession in a nutrient-rich reservoir: environmental and physiological factors leading to Microcystis aeruginosa dominance , 2002 .

[180]  Marco Zavatarelli,et al.  The dynamics of the Adriatic Sea ecosystem. An idealized model study , 2000 .

[181]  B. Sherman,et al.  Is buoyancy regulation in cyanobacteria an adaptation to exploit separation of light and nutrients , 1999 .

[182]  V. J. Bierman,et al.  The Lake Okeechobee Water Quality Model (LOWQM) Enhancements, Calibration, Validation and Analysis , 2005 .

[183]  R. Uncles,et al.  Simulating the Spring Phytoplankton Bloom in the Humber Plume, UK , 1999 .

[184]  J. R. Romero,et al.  Management strategies for a eutrophic water supply reservoir--San Roque, Argentina. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[185]  Roger Proctor,et al.  Modelling the hydrodynamics and ecosystem of the North-West European continental shelf for operational oceanography , 2007 .

[186]  David Hamilton,et al.  Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake , 2012, Hydrobiologia.

[187]  J. Bernhardt,et al.  Modelling the effects on phytoplankton communities of changing mixed depth and background extinction coefficient on three contrasting lakes in the English Lake District , 2008 .

[188]  George B. Arhonditsis,et al.  Modelling the role of highly unsaturated fatty acids in planktonic food web processes: Sensitivity analysis and examination of contemporary hypotheses , 2013, Ecol. Informatics.

[189]  Thomas R. Anderson,et al.  Plankton functional type modelling : running before we can walk? , 2005 .

[190]  Thomas Neumann,et al.  Towards a 3D-ecosystem model of the Baltic Sea , 2000 .

[191]  T. Neumann,et al.  Model study on the ecosystem impact of a variable C:N:P ratio for cyanobacteria in the Baltic Proper , 2008 .

[192]  Bodil Charlotta Pers,et al.  Modeling the response of eutrophication control measures in a Swedish lake. , 2005, Ambio.

[193]  David P. Hamilton,et al.  Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia , 2004 .

[194]  J. Tintoré,et al.  Modelling the deep-chlorophyll maximum : a coupled physical-biological approach , 1992 .

[195]  A. Walsby,et al.  The Role of Potassium in the Control of Turgor Pressure in a Gas-Vacuolate Blue-Green Alga , 1981 .

[196]  J. A. Elliott,et al.  An investigation of dominance in phytoplankton using the PROTECH model , 2001 .

[197]  Martin F. Lambert,et al.  Numerical models for management of Anabaena circinalis , 2004, Journal of Applied Phycology.

[198]  Inga Hense,et al.  Modelling cyanobacteria in shallow coastal seas. , 2010 .

[199]  B. Müller-Karulis,et al.  Modeling the long-term dynamics of nutrients and phytoplankton in the Gulf of Riga , 2011 .

[200]  George B. Arhonditsis,et al.  USELESS ARITHMETIC ? LESSONS LEARNT FROM AQUATIC BIOGEOCHEMICAL MODELING , 2008 .

[201]  D. Roelke,et al.  Current Status of Mathematical Models for Population Dynamics of Prymnesium parvum in a Texas Reservoir 1 , 2010 .

[202]  T. Aldenberg,et al.  A mathematical model of the phosphorus cycle in Lake Loosdrecht and simulation of additional measures , 1992, Hydrobiologia.

[203]  M. Herzfeld,et al.  Applied coastal biogeochemical modelling to quantify the environmental impact of fish farm nutrients and inform managers , 2010 .

[204]  George B. Arhonditsis,et al.  Competition patterns among phytoplankton functional groups: How useful are the complex mathematical models? , 2008 .