Analysis of the effective operating factors of Fischer-Tropsch synthesis; Investigation of modeling and experimental data

[1]  Philip L. Walker,et al.  Gas Reactions of Carbon , 1975 .

[2]  Manfred Baerns,et al.  Prediction of the performance of catalytic fixed bed reactors for Fischer-Tropsch Synthesis , 1980 .

[3]  Charles N. Satterfield,et al.  Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst , 1984 .

[4]  W.-D. Deckwer,et al.  Kinetics of the Fischer-Tropsch synthesis in the slurry phase on a potassium promoted iron catalyst , 1985 .

[5]  Bohdan W. Wojciechowski,et al.  The Kinetics of the Fischer-Tropsch Synthesis , 1988 .

[6]  Bohdan W. Wojciechowski,et al.  Studies of the fischer-tropsch synthesis on a cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons , 1989 .

[7]  M. Dry,et al.  The fischer-tropsch process ― Commercial aspects , 1990 .

[8]  Charles N. Satterfield,et al.  Heterogeneous catalysis in industrial practice , 1991 .

[9]  Gilbert F. Froment,et al.  Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling , 1993 .

[10]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[11]  Hans Schulz,et al.  Short history and present trends of Fischer–Tropsch synthesis , 1999 .

[12]  G. V. D. Laan,et al.  Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review , 1999 .

[13]  Hans Schulz,et al.  Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts , 1999 .

[14]  John R. Moss,et al.  Organometallic chemistry and surface science: mechanistic models for the Fischer–Tropsch synthesis , 2000 .

[15]  Antonie A. C. M. Beenackers,et al.  Intrinsic kinetics of the gas-solid Fischer-Tropsch and water gas shift reactions over a precipitated iron catalyst , 2000 .

[16]  Hongwei Xiang,et al.  Effect of reaction conditions on the product distribution during Fischer–Tropsch synthesis over an industrial Fe-Mn catalyst , 2001 .

[17]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[18]  Hongwei Xiang,et al.  Slurry phase Fischer–Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst , 2002 .

[19]  Abhaya K. Datye,et al.  Attrition Resistance of Supports for Iron Fischer-Tropsch Catalysts , 2003 .

[20]  Ying Liu,et al.  Detailed Kinetics of Fischer−Tropsch Synthesis on an Industrial Fe−Mn Catalyst , 2003 .

[21]  L. Pellegrini,et al.  Hydroconversion of Fischer–Tropsch waxes: Assessment of the operating conditions effect by factorial design experiments , 2005 .

[22]  Qin-Qin Xu,et al.  Experiments and numerical simulations of supercritical fluid extraction for Hippophae rhamnoides L seed oil based on artificial neural networks , 2005 .

[23]  Brian L. Critchfield Statistical Methods For Kinetic Modeling Of Fischer Tropsch Synthesis On A Supported Iron Catalyst , 2006 .

[24]  Paulo L.C. Lage,et al.  Kinetic Rates of the Fischer Tropsch Synthesis on a Co/Nb2O5 Catalyst , 2006 .

[25]  F. Gideon Botes,et al.  Development and Testing of a New Macro Kinetic Expression for the Iron-Based Low-Temperature Fischer−Tropsch Reaction , 2006 .

[26]  Qian Li,et al.  Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method , 2007 .

[27]  Ahmad Tavasoli,et al.  Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer-Tropsch synthesis catalyst , 2010 .

[28]  Manos Mavrikakis,et al.  CO activation pathways and the mechanism of Fischer–Tropsch synthesis , 2010 .

[29]  Mohammad Reza Housaindokht,et al.  Size-dependent evaluation of Fischer-Tropsch synthesis by nano structured iron catalyst , 2010 .

[30]  Sayyed Faramarz Tayyari,et al.  Kinetics of the water-gas shift reaction in Fischer-Tropsch synthesis over a nano-structured iron catalyst , 2010 .

[31]  Sayyed Faramarz Tayyari,et al.  Kinetics studies of nano-structured iron catalyst in Fischer-Tropsch synthesis , 2010 .

[32]  Manos Mavrikakis,et al.  Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer−Tropsch Synthesis on Fe and Co Catalysts , 2010 .

[33]  Mostafa Feyzi,et al.  Effects of promoters and calcination conditions on the catalytic performance of iron–manganese catalysts for Fischer–Tropsch synthesis , 2011 .

[34]  Je-Lueng Shie,et al.  Synthesis of alcohols and alkanes over potassium and vanadium promoted molybdenum carbides , 2012 .

[35]  Mehdi Ahmadi,et al.  Predicting Fenton modification of solid waste vegetable oil industry for arsenic removal using artificial neural networks , 2012 .

[36]  Shahin Rafiee,et al.  Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models , 2012 .

[37]  Mohammad Irani,et al.  Kinetics study of CO hydrogenation on a precipitated iron catalyst , 2012 .

[38]  M. Saidi,et al.  Modeling and optimization of Fischer–Tropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm , 2013 .

[39]  Farhad Fazlollahi,et al.  Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide , 2013 .

[40]  Bijan Najafi,et al.  Viscosity prediction by computational method and artificial neural network approach: The case of six refrigerants , 2013 .

[41]  Mehdi Shiva,et al.  Study of syngas conversion to light olefins by statistical models , 2014 .

[42]  Kiril Lisichkov,et al.  Artificial neural network modelling of supercritical fluid CO2 extraction of polyunsaturated fatty acids from common carp (Cyprinus carpio L.) viscera , 2014 .

[43]  Zhenhua Li,et al.  Effect of Carbon Porosity and Cobalt Particle Size on the Catalytic Performance of Carbon Supported Cobalt Fischer–Tropsch Catalysts , 2014 .

[44]  Sirous Shafiei,et al.  Modeling and optimization of antidepressant drug Fluoxetine removal in aqueous media by ozone/H2O2 process: Comparison of central composite design and artificial neural network approaches , 2015 .

[45]  Behnam Sedighi,et al.  Preparation and characterization of Co–Fe nano catalyst for Fischer–Tropsch synthesis: Optimization using response surface methodology , 2015 .

[46]  J. Maran,et al.  Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil. , 2015, Ultrasonics sonochemistry.