Quantum Earth Mover's Distance: A New Approach to Learning Quantum Data

Quantifying how far the output of a learning algorithm is from its target is an essential task in machine learning. However, in quantum settings, the loss landscapes of commonly used distance metrics often produce undesirable outcomes such as poor local minima and exponentially decaying gradients. As a new approach, we consider here the quantum earth mover’s (EM) or Wasserstein-1 distance, recently proposed in [De Palma et al., arXiv:2009.04469] as a quantum analog to the classical EM distance. We show that the quantum EM distance possesses unique properties, not found in other commonly used quantum distance metrics, that make quantum learning more stable and efficient. We propose a quantum Wasserstein generative adversarial network (qWGAN) which takes advantage of the quantum EM distance and provides an efficient means of performing learning on quantum data. Our qWGAN requires resources polynomial in the number of qubits, and our numerical experiments demonstrate that it is capable of learning a diverse set of quantum data.

[1]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[2]  S. Dulman,et al.  Portfolio rebalancing experiments using the Quantum Alternating Operator Ansatz , 2019, 1911.05296.

[3]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[4]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[5]  M. Murao,et al.  Reversing Unknown Quantum Transformations: Universal Quantum Circuit for Inverting General Unitary Operations. , 2018, Physical review letters.

[6]  Franco Nori,et al.  Quantum State Tomography with Conditional Generative Adversarial Networks , 2020, Physical review letters.

[7]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[8]  Zhe Gan,et al.  Adversarial Text Generation via Feature-Mover's Distance , 2018, NeurIPS.

[9]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[10]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[11]  G. D’Ariano,et al.  Optimal quantum learning of a unitary transformation , 2009, 0903.0543.

[12]  Giacomo De Palma,et al.  The conditional Entropy Power Inequality for quantum additive noise channels , 2018, Journal of Mathematical Physics.

[13]  Yue Sun,et al.  Option Pricing using Quantum Computers , 2019, Quantum.

[14]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[15]  Tomás Babej,et al.  A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding , 2018, 1810.13411.

[16]  A. Potter,et al.  QED driven QAOA for network-flow optimization , 2020, Quantum.

[17]  Marco Cuturi,et al.  Computational Optimal Transport: With Applications to Data Science , 2019 .

[18]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[19]  Masoud Mohseni,et al.  Layerwise learning for quantum neural networks , 2020, Quantum Machine Intelligence.

[20]  Seth Lloyd,et al.  Learning Unitaries by Gradient Descent , 2020, ArXiv.

[21]  L. Kantorovich On the Translocation of Masses , 2006 .

[22]  Abhinav Anand,et al.  Experimental demonstration of a quantum generative adversarial network for continuous distributions , 2020, ArXiv.

[23]  Quantum Machine Learning in Chemistry and Materials , 2020, Handbook of Materials Modeling.

[24]  Seth Lloyd,et al.  Quantum Generative Adversarial Learning. , 2018, Physical review letters.

[25]  David J Tannor,et al.  Are there traps in quantum control landscapes? , 2011, Physical review letters.

[26]  Tryphon T. Georgiou,et al.  Matricial Wasserstein-1 Distance , 2017, IEEE Control Systems Letters.

[27]  E. Carlen,et al.  Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance , 2016, 1609.01254.

[28]  G. De Palma,et al.  Quantum Optimal Transport with Quantum Channels , 2019, Annales Henri Poincaré.

[29]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[30]  Lei Wang,et al.  Differentiable Learning of Quantum Circuit Born Machine , 2018, Physical Review A.

[31]  Wojciech Słomczyński,et al.  The Monge distance between quantum states , 1997, quant-ph/9711011.

[32]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[33]  S. Lloyd,et al.  Variational quantum unsampling on a quantum photonic processor , 2019, Nature Physics.

[34]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[35]  Thierry Paul,et al.  WAVE PACKETS AND THE QUADRATIC MONGE-KANTOROVICH DISTANCE IN QUANTUM MECHANICS , 2017, 1707.04161.

[36]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Herschel Rabitz,et al.  Exploring constrained quantum control landscapes. , 2011, The Journal of chemical physics.

[38]  N. Datta,et al.  Relating Relative Entropy, Optimal Transport and Fisher Information: A Quantum HWI Inequality , 2017, Annales Henri Poincaré.

[39]  Akira Sone,et al.  Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks , 2020, ArXiv.

[40]  C. Villani Optimal Transport: Old and New , 2008 .

[41]  Sirui Lu,et al.  Quantum Adversarial Machine Learning , 2020, ArXiv.

[42]  Nicolai Friis,et al.  Optimizing Quantum Error Correction Codes with Reinforcement Learning , 2018, Quantum.

[43]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[44]  Daniel Herr,et al.  Anomaly detection with variational quantum generative adversarial networks , 2020, Quantum Science and Technology.

[45]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[46]  Xi Chen,et al.  Wasserstein Distributional Robustness and Regularization in Statistical Learning , 2017, ArXiv.

[47]  Simone Severini,et al.  Experimental learning of quantum states , 2017, Science Advances.

[48]  Rocco Duvenhage,et al.  Balance Between Quantum Markov Semigroups , 2017, Annales Henri Poincaré.

[49]  Jun Gao,et al.  Experimental Machine Learning of Quantum States. , 2017, Physical review letters.

[50]  Yoshihiko Hasegawa,et al.  Geometrical Bounds of the Irreversibility in Markovian Systems. , 2020, Physical review letters.

[51]  Sebastian Nowozin,et al.  Stabilizing Training of Generative Adversarial Networks through Regularization , 2017, NIPS.

[52]  D. Ornstein An Application of Ergodic Theory to Probability Theory , 1973 .

[53]  Patrick Huembeli,et al.  Characterizing the loss landscape of variational quantum circuits , 2020, Quantum Science and Technology.

[54]  Yongxin Chen,et al.  Vector and Matrix Optimal Mass Transport: Theory, Algorithm, and Applications , 2017, SIAM J. Sci. Comput..

[55]  Han Zhang,et al.  Self-Attention Generative Adversarial Networks , 2018, ICML.

[56]  M. Cerezo,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[57]  Seth Lloyd,et al.  Quantum advantage for differential equation analysis , 2020, ArXiv.

[58]  J. Stokes,et al.  Quantum Natural Gradient , 2019, Quantum.

[59]  Jun Wang,et al.  An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition , 2018, Neurocomputing.

[60]  Jiangping Hu,et al.  Learning and Inference on Generative Adversarial Quantum Circuits , 2018, Physical Review A.

[61]  Dacheng Tao,et al.  The Expressive Power of Parameterized Quantum Circuits , 2018, ArXiv.

[62]  Shu-Hao Wu,et al.  Quantum generative adversarial learning in a superconducting quantum circuit , 2018, Science Advances.

[63]  Yann LeCun,et al.  Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs , 2016, ICML.

[64]  N. Datta,et al.  Concentration of quantum states from quantum functional and transportation cost inequalities , 2017, Journal of Mathematical Physics.

[65]  Alejandro Perdomo-Ortiz,et al.  A generative modeling approach for benchmarking and training shallow quantum circuits , 2018, npj Quantum Information.

[66]  E. Carlen,et al.  Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems , 2018, Journal of statistical physics.

[67]  Soonwon Choi,et al.  Quantum convolutional neural networks , 2018, Nature Physics.

[68]  Emanuele Caglioti,et al.  Towards Optimal Transport for Quantum Densities , 2021 .

[69]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[70]  Seth Lloyd,et al.  Quantum Medical Imaging Algorithms , 2020, 2004.02036.

[71]  P. Baireuther,et al.  Machine-learning-assisted correction of correlated qubit errors in a topological code , 2017, 1705.07855.

[72]  T. Paul,et al.  On the Mean Field and Classical Limits of Quantum Mechanics , 2015, Communications in Mathematical Physics.

[73]  Michael Broughton,et al.  A quantum algorithm to train neural networks using low-depth circuits , 2017, 1712.05304.

[74]  Alan Aspuru-Guzik,et al.  Variational Quantum Generators: Generative Adversarial Quantum Machine Learning for Continuous Distributions , 2019, Advanced Quantum Technologies.

[75]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[76]  Li Gao,et al.  Fisher Information and Logarithmic Sobolev Inequality for Matrix-Valued Functions , 2018, Annales Henri Poincaré.

[77]  Nathan Killoran,et al.  Quantum generative adversarial networks , 2018, Physical Review A.

[78]  E. Carlen,et al.  An Analog of the 2-Wasserstein Metric in Non-Commutative Probability Under Which the Fermionic Fokker–Planck Equation is Gradient Flow for the Entropy , 2012, 1203.5377.

[79]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[80]  Seth Lloyd,et al.  The Quantum Wasserstein Distance of Order 1 , 2020, IEEE Transactions on Information Theory.

[81]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[82]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[83]  Roman Orus,et al.  Quantum computing for finance: Overview and prospects , 2018, Reviews in Physics.

[84]  Thierry Paul,et al.  The Schrödinger Equation in the Mean-Field and Semiclassical Regime , 2015, 1510.06681.

[85]  Kazuki Ikeda,et al.  Foundation of quantum optimal transport and applications , 2019, Quantum Information Processing.

[86]  Roger G. Melko,et al.  Reconstructing quantum states with generative models , 2018, Nature Machine Intelligence.

[87]  Stefan Woerner,et al.  Quantum Generative Adversarial Networks for learning and loading random distributions , 2019, npj Quantum Information.

[88]  Atri Rudra,et al.  Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations , 2019, ICML.

[89]  S. Lloyd Quantum approximate optimization is computationally universal , 2018, 1812.11075.

[90]  Ahmed M. Elgammal,et al.  CAN: Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating from Style Norms , 2017, ICCC.

[91]  Simone Severini,et al.  Adversarial quantum circuit learning for pure state approximation , 2018, New Journal of Physics.

[92]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[93]  Jun Li,et al.  Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment , 2017, 1801.01465.

[94]  Tyson Jones,et al.  Quantum compilation and circuit optimisation via energy dissipation , 2018 .

[95]  A. Tannenbaum,et al.  Wasserstein Geometry of Quantum States and Optimal Transport of Matrix-Valued Measures , 2018 .

[96]  Kishor Bharti,et al.  Quantum Assisted Simulator , 2020 .

[97]  Elham Kashefi,et al.  The Born supremacy: quantum advantage and training of an Ising Born machine , 2019, npj Quantum Information.

[98]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[99]  Seth Lloyd,et al.  Continuous-variable quantum neural networks , 2018, Physical Review Research.

[100]  Peter D. Johnson,et al.  QVECTOR: an algorithm for device-tailored quantum error correction , 2017, 1711.02249.

[101]  Yann LeCun,et al.  Fast Approximation of Rotations and Hessians matrices , 2014, ArXiv.

[102]  Zefeng Li,et al.  Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning , 2018, Geophysical Research Letters.

[103]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[104]  Ronald de Wolf,et al.  Quantum SDP-Solvers: Better Upper and Lower Bounds , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[105]  Asja Fischer,et al.  On the regularization of Wasserstein GANs , 2017, ICLR.

[106]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[107]  Naoki Yamamoto,et al.  Quantum semi-supervised generative adversarial network for enhanced data classification , 2020, Scientific Reports.

[108]  Roger G. Melko,et al.  Machine-Learning Quantum States in the NISQ Era , 2019, Annual Review of Condensed Matter Physics.

[109]  Wojciech Słomczyński,et al.  The Monge metric on the sphere and geometry of quantum states , 2000, quant-ph/0008016.

[110]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[111]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[112]  Kunal Sharma,et al.  Trainability of Dissipative Perceptron-Based Quantum Neural Networks , 2020, ArXiv.

[113]  J. Agredo ON EXPONENTIAL CONVERGENCE OF GENERIC QUANTUM MARKOV SEMIGROUPS IN A WASSERSTEIN-TYPE DISTANCE , 2016 .

[114]  Qi Xuan,et al.  Multiview Generative Adversarial Network and Its Application in Pearl Classification , 2019, IEEE Transactions on Industrial Electronics.

[115]  A. Vershik Long History of the Monge-Kantorovich Transportation Problem , 2013 .

[116]  F. Fagnola,et al.  On quantum versions of the classical Wasserstein distance , 2017 .

[117]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[118]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[119]  Tobias J. Osborne,et al.  Training deep quantum neural networks , 2020, Nature Communications.

[120]  Arthur Pesah,et al.  Absence of Barren Plateaus in Quantum Convolutional Neural Networks , 2020, Physical Review X.

[121]  Emanuele Caglioti,et al.  Quantum Optimal Transport is Cheaper , 2019, ArXiv.

[122]  Felix Leditzky,et al.  Quantum codes from neural networks , 2018, New Journal of Physics.

[123]  Shouvanik Chakrabarti,et al.  Quantum Wasserstein Generative Adversarial Networks , 2019, NeurIPS.

[124]  T. Martínez,et al.  Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. , 2019, Physical review letters.

[125]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[126]  Ping Tan,et al.  DualGAN: Unsupervised Dual Learning for Image-to-Image Translation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[127]  S. Lloyd,et al.  Quantum polar decomposition algorithm , 2020, 2006.00841.

[128]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[129]  Ting Liu,et al.  Recent advances in convolutional neural networks , 2015, Pattern Recognit..

[130]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[131]  Tryphon T. Georgiou,et al.  Matrix Optimal Mass Transport: A Quantum Mechanical Approach , 2016, IEEE Transactions on Automatic Control.

[132]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[133]  H. Rabitz,et al.  Robust quantum control in games: An adversarial learning approach , 2019, 1909.02296.

[134]  Julián Agredo,et al.  A Wasserstein-type Distance to Measure Deviation from Equilibrium of Quantum Markov Semigroups , 2013, Open Syst. Inf. Dyn..

[135]  Nicholas Chancellor,et al.  Domain wall encoding of discrete variables for quantum annealing and QAOA , 2019, Quantum Science and Technology.

[136]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[137]  F. Golse The quantum N-body problem in the mean-field and semiclassical regime , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.