Uniqueness and minimal obstructions for tree-depth
暂无分享,去创建一个
[1] Jaroslav Nesetril,et al. Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..
[2] Dimitrios M. Thilikos,et al. Obstructions for Tree-depth , 2009, Electron. Notes Discret. Math..
[3] Mirko Hornák,et al. On-line ranking number for cycles and paths , 1999, Discuss. Math. Graph Theory.
[4] H. D. Ratliff,et al. Optimal Node Ranking of Trees , 1988, Inf. Process. Lett..
[5] Dimitrios M. Thilikos,et al. Forbidden graphs for tree-depth , 2012, Eur. J. Comb..
[6] Klaus Jansen,et al. Rankings of Graphs , 1998, SIAM J. Discret. Math..
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] Jaroslav Nesetril,et al. Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..
[9] Amotz Bar-Noy,et al. Ordered coloring of grids and related graphs , 2012, Theor. Comput. Sci..
[10] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[11] J. Nesetril,et al. Grad and classes with bounded expansion III. restricted dualities , 2005, math/0508325.
[12] David Kuo,et al. Ranking numbers of graphs , 2010, Inf. Process. Lett..
[13] Suzanne M. Seager,et al. Ordered colourings , 1995, Discret. Math..