Alcohol-induced decomposition of Olmstead's crystalline Ag(I)-fullerene heteronanostructure yields 'bucky cubes'†

Olmstead's crystalline C60-fullerene–Ag(I) organometallic heteronanostructure [C60{AgNO3}5] undergoes an apparently irreversible structural rearrangement upon exposure to low molecular weight aliphatic alcohols leading to a uniquely structured formation of well-oriented fullerene nano/microcrystals (‘bucky cubes’). The mechanism of rearrangement represents a supramolecular analogue of topotactic processes more commonly associated with some purely inorganic materials, such as maghemite, where chemical changes can occur with addition or loss of materials. Hence C60{AgNO3}5, whose rearrangement occurs at the nano/molecular level (i.e. not atomic scale), undergoes a transformation from a crystalline organometallic complex to well ordered cube-shaped arrays of needle-like fullerene microcrystals which reflect the original cubic crystal morphology and internal structure. Processing of bucky cubes by reduction with hydrazine results in a Ag nanoparticle–C60 crystal nanocomposite with potential for SERS analyses.

[1]  F. Whitmore THE COMMON BASIS OF INTRAMOLECULAR REARRANGEMENTS1 , 1932 .

[2]  Xuan Zhang,et al.  Controlled fabrication of fullerene C60 into microspheres of nanoplates through porphyrin-polymer-assisted self-assembly. , 2009, Angewandte Chemie.

[3]  F. Meldrum,et al.  Crystallization on surfaces of well-defined topography. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[4]  Liquan Chen,et al.  Surface enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on silver electrode in lithium batteries , 2000 .

[5]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[6]  Katsuhiko Ariga,et al.  Solvent engineering for shape-shifter pure fullerene (C60). , 2009, Journal of the American Chemical Society.

[7]  T. Wågberg,et al.  On the fabrication of crystalline C60 nanorod transistors from solution , 2012, Nanotechnology.

[8]  K. Ariga,et al.  Nanostructured microspheres of MnO2 formed by room temperature solution processing. , 2008, Chemical communications.

[9]  A. Powell,et al.  Thermolysis of a hybrid organic-inorganic supramolecular coordination assembly: templating the formation of nanostructured fibrous materials and carbon-based microcapsules. , 2005, Angewandte Chemie.

[10]  H. Shin,et al.  Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process. , 2008, Angewandte Chemie.

[11]  H. Möhwald,et al.  Recent progress in morphology control of supramolecular fullerene assemblies and its applications. , 2010, Chemical Society reviews.

[12]  F. D’Souza,et al.  Decomposition of dinuclear manganese complexes for the preparation of nanostructured oxide materials. , 2008, Inorganic chemistry.

[13]  Woo-Sik Kim,et al.  Synthesis and Characterization of Various-Shaped C60 Microcrystals Using Alcohols As Antisolvents , 2010 .

[14]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[15]  K. Semenov,et al.  Solubility of Light Fullerenes in Organic Solvents , 2010 .

[16]  K. Semenov,et al.  The solubility of fullerenes in n-alkanols-1 , 2008 .

[17]  K. Miyazawa Synthesis and properties of fullerene nanowhiskers and fullerene nanotubes. , 2009, Journal of nanoscience and nanotechnology.

[18]  D. Reinhoudt,et al.  Synthesis Beyond the Molecule , 2002, Science.

[19]  K. Ariga Manipulation of Nanoscale Materials: An Introduction to Nanoarchitectonics , 2012 .

[20]  K. Maitra,et al.  Formation of a Curved Silver Nitrate Network That Conforms to the Shape of C60 and Encapsulates the Fullerene—Structural Characterization of C60{Ag(NO3)}5 , 1999 .

[21]  K. Ariga,et al.  Room temperature liquid fullerenes: an uncommon morphology of C60 derivatives. , 2006, Journal of the American Chemical Society.

[22]  K. Miyazawa,et al.  Solvated structure of C60 nanowhiskers , 2005 .

[23]  O. Ito,et al.  Diameter controlled growth of fullerene nanowhiskers and their optical properties , 2011 .

[24]  M. Sathish,et al.  Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface. , 2007, Journal of the American Chemical Society.

[25]  E. Nakamura,et al.  Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. , 2003, Accounts of chemical research.

[26]  M. Aono,et al.  Forming nanomaterials as layered functional structures toward materials nanoarchitectonics , 2012 .

[27]  Duncan Graham,et al.  Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. , 2004, Analytical chemistry.

[28]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[29]  Katsuhiko Ariga,et al.  Challenges and breakthroughs in recent research on self-assembly , 2008, Science and technology of advanced materials.

[30]  G. Zou,et al.  Highly Enhanced Luminescence from Single-Crystalline C60·1m-xylene Nanorods , 2006 .

[31]  M. Prato,et al.  Supramolecular self-assembled fullerene nanostructures , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Jedeok Kim,et al.  Vertically Well-Aligned C60 Microtube Crystal Array Prepared Using a Solution-Based, One-Step Process , 2008 .

[33]  Bingbing Liu,et al.  Synthesis of differently shaped C70 nano/microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence , 2012 .

[34]  H. Choi,et al.  Self-crystallization of C(70) cubes and remarkable enhancement of photoluminescence. , 2010, Angewandte Chemie.

[35]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .