Edge localized mode physics and operational aspects in tokamaks

Recent progress in experimental and theoretical studies of edge localized mode (ELM) physics is reviewed for the reactor relevant plasma regimes, namely the high confinement regimes, that is, H-modes and advanced scenarios.Theoretical approaches to ELM physics, from a linear ideal magnetohydrodynamic (MHD) stability analysis to non-linear transport models with ELMs are discussed with respect to experimental observations, in particular the fast collapse of pedestal pressure profiles, magnetic measurements and scrape-off layer transport during ELMs.High confinement regimes with different types of ELMs are addressed in this paper in the context of development of operational scenarios for ITER. The key parameters that have been identified at present to reduce the energy losses in Type I ELMs are operation at high density, high edge magnetic shear and high triangularity. However, according to the present experimental scaling for the energy losses in Type I ELMs, the extrapolation of such regimes for ITER leads to unacceptably large heat loads on the divertor target plates exceeding the material limits. High confinement H-mode scenarios at high triangularity and high density with small ELMs (Type II), mixed regimes (Type II and Type I) and combined advanced regimes at high βp are discussed for present-day tokamaks. The optimum combination of high confinement and small MHD activity at the edge in Type II ELM scenarios is of interest to ITER. However, to date, these regimes have been achieved in a rather narrow operational window and far from ITER parameters in terms of collisionality, edge safety factor and βp.The compatibility of the alternative internal transport barrier (ITB) scenario with edge pedestal formation and ELMs is also addressed. Edge physics issues related to the possible combination of small benign ELMs (Type III, Type II ELMs, quiescent double barrier) and high performance ITBs are discussed for present-day experiments (JET, JT-60U, DIII-D) in terms of their relevance for ITER. Successful plasma edge control, at high triangularity (~0.5) and high density (~0.7nGR), in ITB scenarios in JET is reported.Active control of ELMs by edge current, pellet injection, impurities and external magnetic perturbations creating an ergodic zone localized at the separatrix are discussed for present-day experiments and from the perspective of future reactors.

L. L. Lao | M. Gryaznevich | P. C. de Vries | E. Giovannozzi | E. Joffrin | X. Litaudon | S. Saarelma | F. Crisanti | O. Tudisco | Takaki Hatae | Ph. Ghendrih | A. Loarte | Peter Lang | G. Saibene | J. Stober | W. Suttrop | J. Lonnroth | G. F. Matthews | R. Sartori | A. C. C. Sips | M. Valovic | Nobuyuki Asakura | J. M. Ane | R. J. Buttery | G. T. A. Huysmans | H. R. Koslowski | Y. Kamada | A. Grosman | T. E. Evans | X. Garbet | P. Beyer | V. V. Parail | Naoyuki Oyama | M. Becoulet | T. Eich | Anthony William Leonard | K-D Zastrow | P. Monier-Garbet | A. V. Chankin | A. Kirk | P. Lomas | R. A. Moyer | Y. Sarazin | F. Rimini | J. Stober | H. Koslowski | X. Garbet | Y. Sarazin | L. Lao | Y. Kamada | L. Horton | V. Parail | G. Saibene | R. Sartori | A. Sips | F. Crisanti | P. Gohil | T. Evans | E. Joffrin | P. Lang | P. Lomas | A. Loarte | P. Snyder | T. Eich | J. Lonnroth | K. Zastrow | E. Giovannozzi | G. Matthews | F. Rimini | S. Saarelma | J. Ané | G. Huysmans | X. Litaudon | P. Thomas | S. Sharapov | P. Ghendrih | M. Valovič | M. Becoulet | W. Suttrop | N. Asakura | A. Leonard | R. Buttery | M. Gryaznevich | A. Kirk | N. Oyama | T. Hatae | A. Grosman | R. Moyer | O. Tudisco | A. Chankin | G. Counsell | H. Wilson | P. Monier-Garbet | P. Beyer | S. Sharapov | H. R. Wilson | P. Gohil | Philip B. Snyder | L. D. Horton | P. Thomas | S. Gerasimov | G. Counsell | C. P. Perez | A. Hermann | Contributors to Jet-Efda Workprogramme | A. Hermann | S. Gerasimov | P. Vries | C. Perez | Contributors to EFDA-Jet Workprogramme | M. Valovic

[1]  W. Suttrop,et al.  Toroidally asymmetric ELM precursors in TCV , 1998 .

[2]  Fast ELM dynamics in JT-60U , 2002 .

[3]  Ph. Ghendrih,et al.  Patterns of ELM impacts on the JET wall components , 2003 .

[4]  V. Riccardo,et al.  Disruption heat loads on the JET MkIIGB divertor , 2002 .

[5]  F. X. Söldner,et al.  Shear optimization experiments with current profile control on JET , 1997 .

[6]  T. W. Petrie,et al.  ELM energy scaling in DIII-D , 2002 .

[7]  E. Joffrin,et al.  Recent Progress on JET Towards the ITER Reference Mode of Operation at High Density. Invited Paper , 2001 .

[8]  G. Fishpool Loss of confinement due to reduction of the edge pedestal in JET , 1998 .

[9]  G. Conway,et al.  A reflectometer for fluctuation and correlation studies on the Joint European Torus tokamak , 1999 .

[10]  Y. Andrew,et al.  Sensitivity of calculated neutral helium line intensities and their ratios to uncertainties in excitation rate coefficients , 2000 .

[11]  W. Kerner,et al.  Plasma confinement in JET H?mode plasmas with H, D, DT and T isotopes , 1999 .

[12]  P. Ghendrih,et al.  Particle flux across a stochastic magnetic layer , 1993 .

[13]  J. Snipes,et al.  Pedestal profiles and fluctuations in C-Mod enhanced D-alpha H-modes , 2000 .

[14]  G. J. Jackson,et al.  Dependence of edge stability on plasma shape and local pressure gradients in the DIII-D and JT-60U tokamaks , 2001 .

[15]  M. Rosenbluth,et al.  Electron heat transport in a tokamak with destroyed magnetic surfaces , 1978 .

[16]  H Kubo,et al.  Quasisteady high-confinement reversed shear plasma with large bootstrap current fraction under full noninductive current drive condition in JT-60U. , 2001, Physical review letters.

[17]  A. Herrmann,et al.  Overview on stationary and transient divertor heat loads , 2002 .

[18]  M. Sugihara,et al.  A 1-D Predictive Model for Energy and Particle Transport in H-Mode , 2002 .

[19]  O. Gruber,et al.  Progress towards steady-state advanced scenarios in ASDEX Upgrade , 2002 .

[20]  J. Kinsey,et al.  The quiescent double barrier regime in DIII-D , 2001 .

[21]  L. Lao,et al.  Plasma shaping, edge ballooning stability and ELM behaviour in DIII-D , 1990 .

[22]  A. Loarte,et al.  Edge localized modes and fluctuations in the JET SOL region , 2003 .

[23]  Alain Becoulet,et al.  JET progress towards an advanced mode of ITER operation with current profile control , 2001 .

[24]  J. Manickam,et al.  Disappearance of giant ELMs and appearance of minute grassy ELMs in JT-60U high-triangularity discharges , 2000 .

[25]  W. Treutterer,et al.  Type II ELMy H modes on ASDEX Upgrade with good confinement at high density , 2001 .

[26]  J. B. Lister,et al.  Magnetic triggering of ELMs in TCV , 2003 .

[27]  J. Stober,et al.  Assessment of erosion and tritium codeposition in ITER-FEAT , 2001 .

[28]  C. Bourdelle,et al.  Stabilizing impact of high gradient of β on microturbulence , 2003 .

[29]  Participant Teams,et al.  ITER: burning plasma physics experiment , 2003 .

[30]  R. L. Miller,et al.  Influence of the plasma edge on tokamak performance , 2000 .

[31]  G. Janeschitz Plasma–wall interaction issues in ITER , 2001 .

[32]  L. C. Bernard,et al.  GATO: An MHD stability code for axisymmetric plasmas with internal separatrices , 1981 .

[33]  J. Stober,et al.  ELMs behaviour and edge plasma stability in JET , 2002 .

[34]  S. Saarelma,et al.  MHD stability analysis of type II ELMs in ASDEX upgrade , 2003 .

[35]  C. Giroud,et al.  Role of the plasma shaping in ITB experiments on JET , 2003 .

[36]  T. Oikawa,et al.  Collapse of density pedestal by giant ELM on JT-60U , 2001 .

[37]  Y. Kamada Observations on the formation and control of transport barriers , 2000 .

[38]  P. Barabaschi,et al.  Key ITER plasma edge and plasma–material interaction issues , 2003 .

[39]  J. Ahn,et al.  Boundary plasma and divertor phenomena in MAST , 2002 .

[40]  Eric Gauthier,et al.  Studies in JET divertors of varied geometry. I: Non-seeded plasma operation , 1999 .

[41]  A. Loarte,et al.  Improved performance of ELMy H-modes at high density by plasma shaping in JET , 2002 .

[42]  P. Gohil,et al.  Dynamics of the formation, sustainment and destruction of transport barriers in magnetically contained fusion plasmas* , 2002 .

[43]  M. Sugihara,et al.  Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER , 2003 .

[44]  J. Ahn,et al.  A review of plasma boundary phenomena in the mega ampere spherical tokamak , 2003 .

[45]  E. Joffrin,et al.  Edge issues in ITB plasmas in JET , 2002 .

[46]  W. Suttrop The physics of large and small edge localized modes , 2000 .

[47]  G. Saibene,et al.  Characteristics and scaling of energy and particle losses during Type I ELMs in JET H-modes , 2002 .

[48]  Taina Kurki-Suonio,et al.  Formation and detection of internal transport barriers in low-current tokamaks , 2002 .

[49]  T. Fujita,et al.  Compatibility conditions of the edge and internal transport barrier formation in JT-60U , 2002 .

[50]  J. Stöckel,et al.  Coherent structures in the edge turbulence of the CASTOR tokamak , 2002 .

[51]  C. Gormezano,et al.  High performance tokamak operation regimes , 1999 .

[52]  Jay Kesner,et al.  Dipole equilibrium and stability , 2001 .

[53]  P. Snyder,et al.  Dynamical simulations of boundary plasma turbulence in divertor geometry , 2002 .

[54]  Formation and sustainment of ITBs under various heating schemes in JT-60U , 2002 .

[55]  B. Alper,et al.  Identification of external kink modes in JET , 1998 .

[56]  H. Zohm Edge localized modes (ELMs) , 1996 .

[57]  J. W. Connor,et al.  Edge-localized modes - physics and theory , 1998 .

[58]  R. Budny,et al.  Improved ELM scaling with impurity seeding in JET , 2003 .

[59]  Tomonori Takizuka,et al.  Pedestal characteristics and extended high-βp ELMy H-mode regime in JT-60U , 2002 .

[60]  L. Lao MHD instabilities occurring near/at the transport barrier , 1999 .