Surface tension and the cosmological constant.

One of the few predictions from quantum gravity models is Sorkin's observation that the cosmological constant has quantum fluctuations originating in the fundamental discreteness of spacetime at the Planck scale. Here we present a compelling analogy between the cosmological constant of the Universe and the surface tension of fluid membranes. The discreteness of spacetime on the Planck scale translates into the discrete molecular structure of a fluid membrane. We propose an analog quantum gravity experiment which realizes Sorkin's idea in the laboratory. We also notice that the analogy sheds light on the cosmological constant problem, suggesting a mechanism for dynamically generating a vanishingly small cosmological constant. We emphasize the generality of Sorkin's idea and suggest that similar effects occur generically in quantum gravity models.

[1]  L. Peliti,et al.  Effects of thermal fluctuations on systems with small surface tension. , 1985, Physical review letters.

[2]  Rudolf Podgornik,et al.  Statistical thermodynamics of surfaces, interfaces, and membranes , 1995 .

[3]  L. Randall,et al.  An Alternative to compactification , 1999, hep-th/9906064.

[4]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[5]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[6]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[7]  G. Shivashankar,et al.  Nanomechanics of membrane tubulation and DNA assembly , 2003 .

[8]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[9]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[10]  Maqbool Ahmed,et al.  Everpresent Lambda , 2002, astro-ph/0209274.

[11]  Rafael D. Sorkin Forks in the road, on the way to quantum gravity , 1997 .

[12]  Big extra dimensions make lambda too small , 2005, gr-qc/0503057.

[13]  J. Hansen,et al.  Basic Concepts for Simple and Complex Liquids , 2003 .

[14]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[15]  Unruh Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. , 1994, Physical review. D, Particles and fields.

[16]  John Ellis,et al.  Tests of quantum gravity from observations of γ-ray bursts , 1998, Nature.

[17]  S. Sinha,et al.  Elasticity of semiflexible polymers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  David R. Nelson,et al.  Statistical mechanics of membranes and surfaces , 2004 .

[19]  A. Srivastava,et al.  Measuring cosmic defect correlations in liquid crystals , 2001, hep-ph/0110165.

[20]  Physical Review , 1965, Nature.

[21]  A. Vilenkin,et al.  Formation and Evolution of Cosmic Strings , 1984 .

[22]  M. Bowick,et al.  The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals , 1992, Science.

[23]  S. Sinha,et al.  Inequivalence of statistical ensembles in single molecule measurements. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Samuel A. Safran,et al.  Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes , 1994 .

[25]  W. Unruh Experimental black hole evaporation , 1981 .

[26]  Unruh,et al.  Unimodular theory of canonical quantum gravity. , 1989, Physical review. D, Particles and fields.

[27]  Joe Henson,et al.  QUANTUM GRAVITY PHENOMENOLOGY, LORENTZ INVARIANCE AND DISCRETENESS , 2003, gr-qc/0311055.

[28]  Mohamed Daoud,et al.  Soft Matter Physics , 1999 .

[29]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[30]  T. Padmanabhan LETTER TO THE EDITOR: Why do we observe a small but nonzero cosmological constant? , 2002 .

[31]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[32]  Unruh,et al.  Time and the interpretation of canonical quantum gravity. , 1989, Physical review. D, Particles and fields.