SIFER: Scale-Invariant Feature Detector with Error Resilience

We present a new method to extract scale-invariant features from an image by using a Cosine Modulated Gaussian (CM-Gaussian) filter. Its balanced scale-space atom with minimal spread in scale and space leads to an outstanding scale-invariant feature detection quality, albeit at reduced planar rotational invariance. Both sharp and distributed features like corners and blobs are reliably detected, irrespective of various image artifacts and camera parameter variations, except for planar rotation. The CM-Gaussian filters are approximated with the sum of exponentials as a single, fixed-length filter and equal approximation error over all scales, providing constant-time, low-cost image filtering implementations. The approximation error of the corresponding digital signal processing is below the noise threshold. It is scalable with the filter order, providing many quality-complexity trade-off working points. We validate the efficiency of the proposed feature detection algorithm on image registration applications over a wide range of testbench conditions.

[1]  Yung-Chang Chen,et al.  High-Performance SIFT Hardware Accelerator for Real-Time Image Feature Extraction , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[2]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Peter Kovesi,et al.  Phase Congruency Detects Corners and Edges , 2003, DICTA.

[4]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[5]  Nick G. Kingsbury,et al.  Multiscale Keypoint Analysis based on Complex Wavelets , 2010, BMVC.

[6]  Patricia Ladret,et al.  The blur effect: perception and estimation with a new no-reference perceptual blur metric , 2007, Electronic Imaging.

[7]  K. S. Pedersen,et al.  A Comparative Study of Interest Point Performance on a Unique Data Set , 2011 .

[8]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[9]  Paul Beaudet,et al.  Rotationally invariant image operators , 1978 .

[10]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[11]  Xinting Gao,et al.  Multiscale Corner Detection of Gray Level Images Based on Log-Gabor Wavelet Transform , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[12]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[14]  Luc Van Gool,et al.  Efficient Non-Maximum Suppression , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[15]  Philippe Soussan,et al.  A compact, high-speed, and low-cost hyperspectral imager , 2012, Other Conferences.

[16]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[17]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[18]  Jasna Maver,et al.  Self-Similarity and Points of Interest , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  R. Deriche Recursively Implementing the Gaussian and its Derivatives , 1993 .

[20]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Rudy Lauwereins,et al.  Robust Low Complexity Corner Detector , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[22]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[23]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[25]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[26]  Luc Van Gool,et al.  Fast scale invariant feature detection and matching on programmable graphics hardware , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[27]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[28]  Radu Horaud,et al.  Finding Geometric and Relational Structures in an Image , 1990, ECCV.

[29]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[30]  Michael Werman,et al.  Ridge's corner detection and correspondence , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Alexandre Bernardino,et al.  APPEARANCE BASED SALIENT POINT DETECTION WITH INTRINSIC SCALE-FREQUENCY DESCRIPTOR , 2005 .

[32]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[33]  S. Mallat A wavelet tour of signal processing , 1998 .

[34]  Wolfgang Förstner,et al.  A Framework for Low Level Feature Extraction , 1994, ECCV.

[35]  HuangFeng-Cheng,et al.  High-Performance SIFT Hardware Accelerator for Real-Time Image Feature Extraction , 2012 .

[36]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[37]  Thomas G. Dietterich,et al.  Principal Curvature-Based Region Detector for Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Farzin Mokhtarian,et al.  Robust Image Corner Detection Through Curvature Scale Space , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[41]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[42]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[43]  Lucas J. van Vliet,et al.  Recursive Gabor filtering , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[44]  Henrik Aanæs,et al.  Interesting Interest Points , 2011, International Journal of Computer Vision.