Spectrum of large random reversible Markov chains: two examples
暂无分享,去创建一个
[1] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[2] J. Laurie Snell,et al. Random Walks and Electric Networks: PREFACE , 1984 .
[3] Bálint Virág,et al. The spectrum of the random environment and localization of noise , 2008, 0804.4814.
[4] Antonio Auffinger,et al. Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.
[5] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[6] Z. Bai,et al. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .
[7] A. Guionnet,et al. An Introduction to Random Matrices , 2009 .
[8] Charles Bordenave,et al. Spectrum of large random reversible Markov chains , 2008 .
[9] F. Hiai,et al. The semicircle law, free random variables, and entropy , 2006 .
[10] A note on some random orthogonal polynomials on a compact interval , 2009 .
[11] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[12] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[13] H. W. Turnbull,et al. Lectures on Matrices , 1934 .
[14] Ravi Montenegro,et al. Mathematical Aspects of Mixing Times in Markov Chains , 2006, Found. Trends Theor. Comput. Sci..
[15] Walter Van Assche,et al. Asymptotics for Orthogonal Polynomials , 1987 .
[16] Djalil CHAFAÏ,et al. Circular Law for Noncentral Random Matrices , 2007, 0709.0036.
[17] G. Biroli,et al. On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.
[18] Holger Dette,et al. The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .
[19] C. Villani. Topics in Optimal Transportation , 2003 .
[20] A. Hoffman,et al. The variation of the spectrum of a normal matrix , 1953 .
[21] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[22] Elizabeth L. Wilmer,et al. Markov Chains and Mixing Times , 2008 .
[23] V. Vu,et al. Random Discrete Matrices , 2008 .
[24] Jim Freeman. Probability Metrics and the Stability of Stochastic Models , 1991 .
[25] Frank Kelly,et al. Reversibility and Stochastic Networks , 1979 .
[26] Arthur S. Wightman. The Collected Works of Eugene Paul Wigner : the Scientific Papers , 1993 .
[27] E. Seneta. Non-negative Matrices and Markov Chains , 2008 .
[28] A. Faggionato,et al. Spectral characterization of aging: The REM-like trap model , 2004, math/0508486.
[29] Samuel Karlin,et al. The classification of birth and death processes , 1957 .
[30] Peter G. Doyle,et al. Random Walks and Electric Networks: REFERENCES , 1987 .
[31] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[32] Alexander Soshnikov,et al. Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .
[33] A. Dembo,et al. Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.
[34] Paul Erdös,et al. On Interpolation. III. Interpolatory Theory of Polynomials , 1940 .
[35] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[36] G. B. Arous,et al. The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.
[37] D. Boivin,et al. Spectral homogenization of reversible random walks on Zd in a random environment , 2003 .
[38] D. H. Griffel,et al. An Introduction to Orthogonal Polynomials , 1979 .
[39] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[40] A. V. D. Vaart,et al. Lectures on probability theory and statistics , 2002 .
[41] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[42] A. Bovier,et al. Spectral analysis of Sinai's walk for small eigenvalues. , 2005, math/0509385.
[43] Djalil Chafaï. The Dirichlet Markov Ensemble , 2010, J. Multivar. Anal..
[44] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[45] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[46] I. Zakharevich,et al. A Generalization of Wigner’s Law , 2006 .
[47] Ofer Zeitouni,et al. Random Walks in Random Environment , 2009, Encyclopedia of Complexity and Systems Science.
[48] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[49] L. Miclo. An example of application of discrete Hardy''s inequalities , 1999 .
[50] Erwin Bolthausen,et al. Ten Lectures on Random Media , 2002 .
[51] General tridiagonal random matrix models, limiting distributions and fluctuations , 2006, math/0610827.
[52] L. Saloff-Coste,et al. Lectures on finite Markov chains , 1997 .
[53] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[54] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[55] One more approach to the convergence of the empirical process to the Brownian bridge , 2007, 0710.3296.
[56] Stephen P. Boyd,et al. Symmetry Analysis of Reversible Markov Chains , 2005, Internet Math..
[57] E. Seneta. Non-negative Matrices and Markov Chains (Springer Series in Statistics) , 1981 .