Spectrum of large random reversible Markov chains: two examples

We take on a Random Matrix theory viewpoint to study the spectrum of certain reversible Markov chains in random environment. As the number of states tends to infinity, we consider the global behavior of the spectrum, and the local behavior at the edge, including the so called spectral gap. Results are obtained for two simple models with distinct limiting features. The first model is built on the complete graph while the second is a birth-and-death dynamics. Both models give rise to random matrices with non independent entries.

[1]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[2]  J. Laurie Snell,et al.  Random Walks and Electric Networks: PREFACE , 1984 .

[3]  Bálint Virág,et al.  The spectrum of the random environment and localization of noise , 2008, 0804.4814.

[4]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[5]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[6]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[7]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[8]  Charles Bordenave,et al.  Spectrum of large random reversible Markov chains , 2008 .

[9]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[10]  A note on some random orthogonal polynomials on a compact interval , 2009 .

[11]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[12]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[13]  H. W. Turnbull,et al.  Lectures on Matrices , 1934 .

[14]  Ravi Montenegro,et al.  Mathematical Aspects of Mixing Times in Markov Chains , 2006, Found. Trends Theor. Comput. Sci..

[15]  Walter Van Assche,et al.  Asymptotics for Orthogonal Polynomials , 1987 .

[16]  Djalil CHAFAÏ,et al.  Circular Law for Noncentral Random Matrices , 2007, 0709.0036.

[17]  G. Biroli,et al.  On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.

[18]  Holger Dette,et al.  The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .

[19]  C. Villani Topics in Optimal Transportation , 2003 .

[20]  A. Hoffman,et al.  The variation of the spectrum of a normal matrix , 1953 .

[21]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[22]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[23]  V. Vu,et al.  Random Discrete Matrices , 2008 .

[24]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[25]  Frank Kelly,et al.  Reversibility and Stochastic Networks , 1979 .

[26]  Arthur S. Wightman The Collected Works of Eugene Paul Wigner : the Scientific Papers , 1993 .

[27]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[28]  A. Faggionato,et al.  Spectral characterization of aging: The REM-like trap model , 2004, math/0508486.

[29]  Samuel Karlin,et al.  The classification of birth and death processes , 1957 .

[30]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[31]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[32]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .

[33]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[34]  Paul Erdös,et al.  On Interpolation. III. Interpolatory Theory of Polynomials , 1940 .

[35]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[36]  G. B. Arous,et al.  The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.

[37]  D. Boivin,et al.  Spectral homogenization of reversible random walks on Zd in a random environment , 2003 .

[38]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[39]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[40]  A. V. D. Vaart,et al.  Lectures on probability theory and statistics , 2002 .

[41]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[42]  A. Bovier,et al.  Spectral analysis of Sinai's walk for small eigenvalues. , 2005, math/0509385.

[43]  Djalil Chafaï The Dirichlet Markov Ensemble , 2010, J. Multivar. Anal..

[44]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[45]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[46]  I. Zakharevich,et al.  A Generalization of Wigner’s Law , 2006 .

[47]  Ofer Zeitouni,et al.  Random Walks in Random Environment , 2009, Encyclopedia of Complexity and Systems Science.

[48]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[49]  L. Miclo An example of application of discrete Hardy''s inequalities , 1999 .

[50]  Erwin Bolthausen,et al.  Ten Lectures on Random Media , 2002 .

[51]  General tridiagonal random matrix models, limiting distributions and fluctuations , 2006, math/0610827.

[52]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[53]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[54]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[55]  One more approach to the convergence of the empirical process to the Brownian bridge , 2007, 0710.3296.

[56]  Stephen P. Boyd,et al.  Symmetry Analysis of Reversible Markov Chains , 2005, Internet Math..

[57]  E. Seneta Non-negative Matrices and Markov Chains (Springer Series in Statistics) , 1981 .