Second Sphere Coordination Adducts of Phosphane‐Transition Metal Complexes with β‐Cyclodextrin and its Methylated Derivative

[1]  David J. Williams,et al.  Koordination in zweiter Sphäre — eine neuartige Rolle für Rezeptormoleküle , 1986 .

[2]  David J. Williams,et al.  Second‐Sphere Coordination–a Novel Rǒle for Molecular Receptors , 1986 .

[3]  F. Hamada,et al.  UNIQUE BINDING BEHAVIOR OF γ-CYCLOEXTRIN BEARING A FERROCENE MOIETY , 1986 .

[4]  Y. Inoue,et al.  The host-guest orientation in the inclusion complex of hexakis(2,3,6-tri-O-methyl)cyclomaltohexaose with p-nitrophenol in aqueous solution , 1985 .

[5]  David J. Williams,et al.  Cyclodextrins as Second Sphere Ligands for Transition Metal Complexes—The X-Ray Crystal Structure of [Rh(cod)(NH3)2·α-cyclodextrin][PF6]·6H2O† , 1985 .

[6]  David J. Williams,et al.  Cyclodextrine als Liganden zur Koordination von Übergangsmetallkomplexen in der zweiten Sphäre; Röntgen-Strukturanalyse von [Rh(cod) (NH3)2·α-cyclodextrin] [PF6]·6 H2O† , 1985 .

[7]  T. Matsue,et al.  Cyclic Voltammetric Determination of Formation Constant of Ferrocene-β-Cyclodextrin Complex in Dimethyl Sulfoxide by Using Digital Simulation , 1985 .

[8]  T. Matsue,et al.  Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of .beta.-cyclodextrin , 1985 .

[9]  H. Ogino,et al.  Synthesis and properties of rotaxane complexes. 2. Rotaxanes consisting of .alpha.-or .beta.-cyclodextrin threaded by (.mu.-.alpha.,.omega.-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes , 1984 .

[10]  G. Trainor,et al.  Optimization of metallocene substrates for .beta.-cyclodextrin reactions , 1983 .

[11]  W. L. Noble,et al.  Effect of pressure on two cyclodextrin-promoted ester hydrolyses , 1983 .

[12]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. XV. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–p-Nitrophenol (1 : 1) Complex Monohydrate , 1982 .

[13]  H. Ogino Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .

[14]  R. Breslow,et al.  VERY FAST ACYLATION OF β-CYCLODEXTRIN BY BOUND P-NITROPHENYL FERROCINNAMATE , 1979 .

[15]  K. Harata The Structure of the Cyclodextrin Complex. V. Crystal Structures of α-Cyclodextrin Complexes with p-Nitrophenol and p-Hydroxybenzoic Acid , 1977 .

[16]  R. Breslow,et al.  Lyophobic binding of substrates by cyclodextrins in nonaqueous solvents , 1975 .

[17]  J. F. Stoddart,et al.  Mass spectrometric investigation of adduct formation by methylated cyclodextrins , 1988 .

[18]  F. Hamada,et al.  Tight inclusion of an acid guest into the cavity of cyclodextrin bearing an amino moiety in dimethyl sulfoxide , 1985 .

[19]  L. Pignolet Homogeneous Catalysis with Metal Phosphine Complexes , 1983, Modern Inorganic Chemistry.

[20]  G. Trainor,et al.  High acylation rates and enantioselectivity with cyclodextrin complexes of rigid substrates , 1981 .

[21]  D. H. Brown,et al.  The chemistry of the gold drugs used in the treatment of rheumatoid arthritis , 1980 .

[22]  P. Nánási,et al.  Synthesis and 13C‐NMR Spectroscopy of Methylated beta‐Cyclodextrins , 1980 .

[23]  R. Breslow,et al.  Improved acylation rates within cyclodextrin complexes from flexible capping of the cyclodextrin and from adjustment of the substrate geometry , 1980 .