Second Sphere Coordination Adducts of Phosphane‐Transition Metal Complexes with β‐Cyclodextrin and its Methylated Derivative
暂无分享,去创建一个
[1] David J. Williams,et al. Koordination in zweiter Sphäre — eine neuartige Rolle für Rezeptormoleküle , 1986 .
[2] David J. Williams,et al. Second‐Sphere Coordination–a Novel Rǒle for Molecular Receptors , 1986 .
[3] F. Hamada,et al. UNIQUE BINDING BEHAVIOR OF γ-CYCLOEXTRIN BEARING A FERROCENE MOIETY , 1986 .
[4] Y. Inoue,et al. The host-guest orientation in the inclusion complex of hexakis(2,3,6-tri-O-methyl)cyclomaltohexaose with p-nitrophenol in aqueous solution , 1985 .
[5] David J. Williams,et al. Cyclodextrins as Second Sphere Ligands for Transition Metal Complexes—The X-Ray Crystal Structure of [Rh(cod)(NH3)2·α-cyclodextrin][PF6]·6H2O† , 1985 .
[6] David J. Williams,et al. Cyclodextrine als Liganden zur Koordination von Übergangsmetallkomplexen in der zweiten Sphäre; Röntgen-Strukturanalyse von [Rh(cod) (NH3)2·α-cyclodextrin] [PF6]·6 H2O† , 1985 .
[7] T. Matsue,et al. Cyclic Voltammetric Determination of Formation Constant of Ferrocene-β-Cyclodextrin Complex in Dimethyl Sulfoxide by Using Digital Simulation , 1985 .
[8] T. Matsue,et al. Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of .beta.-cyclodextrin , 1985 .
[9] H. Ogino,et al. Synthesis and properties of rotaxane complexes. 2. Rotaxanes consisting of .alpha.-or .beta.-cyclodextrin threaded by (.mu.-.alpha.,.omega.-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes , 1984 .
[10] G. Trainor,et al. Optimization of metallocene substrates for .beta.-cyclodextrin reactions , 1983 .
[11] W. L. Noble,et al. Effect of pressure on two cyclodextrin-promoted ester hydrolyses , 1983 .
[12] K. Harata,et al. The Structure of the Cyclodextrin Complex. XV. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–p-Nitrophenol (1 : 1) Complex Monohydrate , 1982 .
[13] H. Ogino. Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .
[14] R. Breslow,et al. VERY FAST ACYLATION OF β-CYCLODEXTRIN BY BOUND P-NITROPHENYL FERROCINNAMATE , 1979 .
[15] K. Harata. The Structure of the Cyclodextrin Complex. V. Crystal Structures of α-Cyclodextrin Complexes with p-Nitrophenol and p-Hydroxybenzoic Acid , 1977 .
[16] R. Breslow,et al. Lyophobic binding of substrates by cyclodextrins in nonaqueous solvents , 1975 .
[17] J. F. Stoddart,et al. Mass spectrometric investigation of adduct formation by methylated cyclodextrins , 1988 .
[18] F. Hamada,et al. Tight inclusion of an acid guest into the cavity of cyclodextrin bearing an amino moiety in dimethyl sulfoxide , 1985 .
[19] L. Pignolet. Homogeneous Catalysis with Metal Phosphine Complexes , 1983, Modern Inorganic Chemistry.
[20] G. Trainor,et al. High acylation rates and enantioselectivity with cyclodextrin complexes of rigid substrates , 1981 .
[21] D. H. Brown,et al. The chemistry of the gold drugs used in the treatment of rheumatoid arthritis , 1980 .
[22] P. Nánási,et al. Synthesis and 13C‐NMR Spectroscopy of Methylated beta‐Cyclodextrins , 1980 .
[23] R. Breslow,et al. Improved acylation rates within cyclodextrin complexes from flexible capping of the cyclodextrin and from adjustment of the substrate geometry , 1980 .