Weak Lensing Galaxy Cluster Field Reconstruction

In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software Lenstool. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

[1]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[2]  A. Kassiola,et al.  Elliptic Mass Distributions versus Elliptic Potentials in Gravitational Lenses , 1993 .

[3]  Peter Schneider,et al.  Maximum Likelihood Cluster Reconstruction , 1996 .

[4]  I. Smail,et al.  Hubble Space Telescope Observations of the Lensing Cluster Abell 2218 , 1995, astro-ph/9511015.

[5]  Jean-Luc Starck,et al.  Deconvolution of astronomical images using the multiscale maximum entropy method , 1996 .

[6]  A. Lasenby,et al.  A maximum‐entropy method for reconstructing the projected mass distribution of gravitational lenses , 1998, astro-ph/9802159.

[7]  U. Seljak Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods , 1997, astro-ph/9711124.

[8]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[9]  A. J. Connolly,et al.  A new source detection algorithm using FDR , 2001 .

[10]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[11]  S. Gull,et al.  Maximum-entropy weak lens reconstruction: Improved methods and application to data , 2001, astro-ph/0112396.

[12]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[13]  Christopher J. Miller,et al.  Controlling the False-Discovery Rate in Astrophysical Data Analysis , 2001, astro-ph/0107034.

[14]  Christopher R. Genovese,et al.  A New Source Detection Algorithm Using the False-Discovery Rate , 2001, astro-ph/0110570.

[15]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[16]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[17]  Non-parametric inversion of strong lensing systems , 2004, astro-ph/0408418.

[18]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[19]  Jean-Luc Starck,et al.  Weak lensing mass reconstruction using wavelets , 2005, astro-ph/0503373.

[20]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[21]  R. Ellis,et al.  Dark matter maps reveal cosmic scaffolding , 2007, Nature.

[22]  J. Kneib,et al.  A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.

[23]  H. Ebeling,et al.  The Spatial Distribution of Galaxies of Different Spectral Types in the Massive Intermediate-Redshift Cluster MACS J0717.5+3745 , 2008, 0805.2238.

[24]  R. Massey,et al.  Combined analysis of weak lensing and X-ray blind surveys , 2007, 0712.3293.

[25]  J. P. U. Fynbo,et al.  DUST EXTINCTION IN HIGH-z GALAXIES WITH GAMMA-RAY BURST AFTERGLOW SPECTROSCOPY: THE 2175 Å FEATURE AT z = 2.45 , 2008, 0810.2897.

[26]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[27]  Hawaii,et al.  The Observed Growth of Massive Galaxy Clusters III: Testing General Relativity on Cosmological Scales , 2009, 0911.1787.

[28]  J. Kneib,et al.  Multiscale cluster lens mass mapping - I. Strong lensing modelling , 2009, 0901.3792.

[29]  Jean-Luc Starck,et al.  Cosmological model discrimination with weak lensing , 2009 .

[30]  Andrew Connolly,et al.  THREE-DIMENSIONAL RECONSTRUCTION OF THE DENSITY FIELD: AN SVD APPROACH TO WEAK-LENSING TOMOGRAPHY , 2010, 1008.2396.

[31]  T. Kitching,et al.  Cluster bulleticity: Cluster bulleticity , 2010, 1007.1924.

[32]  Changbom Park,et al.  Cosmic Voids in Sloan Digital Sky Survey Data Release 7 , 2011, 1103.4156.

[33]  Rien van de Weygaert,et al.  The darkness that shaped the void: dark energy and cosmic voids , 2012, 1205.4238.

[34]  Norbert Werner,et al.  A filament of dark matter between two clusters of galaxies , 2012, Nature.

[35]  Johan Richard,et al.  A weak lensing mass reconstruction of the large‐scale filament feeding the massive galaxy cluster MACS J0717.5+3745 , 2012, 1208.4323.

[36]  Baojiu Li,et al.  STRUCTURE FORMATION IN THE SYMMETRON MODEL , 2011, 1108.3081.

[37]  J. Rhodes,et al.  WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY , 2011, 1108.1981.

[38]  K. Umetsu,et al.  THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS , 2012, 1210.2446.