Universal decoherence due to gravitational time dilation

Gravity and quantum mechanics are expected to meet at extreme energy scales, but time dilation could induce decoherence even at low energies affecting microscopic objects—a prospect that could be tested in future matter-wave experiments.

[1]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[2]  Kiefer,et al.  Quantum gravitational corrections to the functional Schrödinger equation. , 1991, Physical review. D, Particles and fields.

[3]  Erkki J. Brändas,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory : E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch and I.-O Stamatescu, Springer-Verlag, New York, 2003 , 2004 .

[4]  Diósi,et al.  Models for universal reduction of macroscopic quantum fluctuations. , 1989, Physical review. A, General physics.

[5]  D. D. Awschalom,et al.  Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .

[6]  Fabio Costa,et al.  Quantum interferometric visibility as a witness of general relativistic proper time , 2011, Nature communications.

[7]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[8]  Stefan Kuhn,et al.  Cavity cooling of free silicon nanoparticles in high vacuum , 2013, Nature Communications.

[9]  Markus Arndt,et al.  Testing spontaneous localization theories with matter-wave interferometry , 2011, 1103.1236.

[10]  S. Chu,et al.  Laser Manipulation of Atoms and Particles , 1991, Science.

[11]  Philip Stamp,et al.  Theory of the spin bath , 2000 .

[12]  F. Károlyházy,et al.  Gravitation and quantum mechanics of macroscopic objects , 1966 .

[13]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[14]  R. Tolman On the Weight of Heat and Thermal Equilibrium in General Relativity , 1930 .

[15]  Y. Oreg,et al.  Imprint of topological degeneracy in quasi-one-dimensional fractional quantum Hall states , 2015, 1502.01665.

[16]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[17]  A. Peres Recurrence Phenomena in Quantum Dynamics , 1982 .

[18]  B. Englert,et al.  Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.

[19]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[20]  James W. Lamb,et al.  Miscellaneous data on materials for millimetre and submillimetre optics , 1996 .

[21]  D. Bouwmeester,et al.  On Quantum Superpositions in an Optomechanical System , 2008 .

[22]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[23]  D. Bouwmeester,et al.  Creating and verifying a quantum superposition in a micro-optomechanical system , 2008, 0807.1834.

[24]  S. A. Werner,et al.  Observation of Gravitationally Induced Quantum Interference , 1975 .

[25]  Angelo Bassi,et al.  Models of Wave-function Collapse, Underlying Theories, and Experimental Tests , 2012, 1204.4325.

[26]  J. A. Crowther The Evolution of Physics: , 1938, Nature.

[27]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[28]  Florian Blaser,et al.  Cavity cooling of an optically levitated submicron particle , 2013, Proceedings of the National Academy of Sciences.

[29]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[30]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .

[31]  Quantum theory of nonrelativistic particles interacting with gravity. , 1995, Physical review. D, Particles and fields.

[32]  J. C. Hafele,et al.  Around-the-World Atomic Clocks: Predicted Relativistic Time Gains , 1972, Science.

[33]  Anton Zeilinger,et al.  Decoherence of matter waves by thermal emission of radiation , 2004, Nature.

[34]  T. G. Downes,et al.  Gravitationally Induced Decoherence of Optical Entanglement , 2006, quant-ph/0609139.

[35]  C. Lämmerzahl A Hamilton operator for quantum optics in gravitational fields , 1995 .

[36]  Caslav Brukner,et al.  General relativistic effects in quantum interference of photons , 2012, 1206.0965.

[37]  A. Einstein,et al.  Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes , 1911 .

[38]  D. Rugar,et al.  Optical clocks and relativity , 2013 .

[39]  S. Reynaud,et al.  Ultimate decoherence border for matter-wave interferometry. , 2005, Physical review letters.

[40]  Marcel Mayor,et al.  Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. , 2013, Physical chemistry chemical physics : PCCP.

[41]  R Kaltenbaek,et al.  Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.

[42]  M. Blencowe,et al.  Effective field theory approach to gravitationally induced decoherence. , 2012, Physical review letters.