Universal decoherence due to gravitational time dilation
暂无分享,去创建一个
Caslav Brukner | Fabio Costa | Magdalena Zych | Igor Pikovski | Č. Brukner | F. Costa | M. Zych | I. Pikovski
[1] I. Stamatescu,et al. Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .
[2] Kiefer,et al. Quantum gravitational corrections to the functional Schrödinger equation. , 1991, Physical review. D, Particles and fields.
[3] Erkki J. Brändas,et al. Decoherence and the Appearance of a Classical World in Quantum Theory : E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch and I.-O Stamatescu, Springer-Verlag, New York, 2003 , 2004 .
[4] Diósi,et al. Models for universal reduction of macroscopic quantum fluctuations. , 1989, Physical review. A, General physics.
[5] D. D. Awschalom,et al. Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .
[6] Fabio Costa,et al. Quantum interferometric visibility as a witness of general relativistic proper time , 2011, Nature communications.
[7] S. Hawking,et al. Black hole explosions? , 1974, Nature.
[8] Stefan Kuhn,et al. Cavity cooling of free silicon nanoparticles in high vacuum , 2013, Nature Communications.
[9] Markus Arndt,et al. Testing spontaneous localization theories with matter-wave interferometry , 2011, 1103.1236.
[10] S. Chu,et al. Laser Manipulation of Atoms and Particles , 1991, Science.
[11] Philip Stamp,et al. Theory of the spin bath , 2000 .
[12] F. Károlyházy,et al. Gravitation and quantum mechanics of macroscopic objects , 1966 .
[13] A. Leggett,et al. Path integral approach to quantum Brownian motion , 1983 .
[14] R. Tolman. On the Weight of Heat and Thermal Equilibrium in General Relativity , 1930 .
[15] Y. Oreg,et al. Imprint of topological degeneracy in quasi-one-dimensional fractional quantum Hall states , 2015, 1502.01665.
[16] Anton Zeilinger,et al. Wave–particle duality of C60 molecules , 1999, Nature.
[17] A. Peres. Recurrence Phenomena in Quantum Dynamics , 1982 .
[18] B. Englert,et al. Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.
[19] W. Zurek. Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.
[20] James W. Lamb,et al. Miscellaneous data on materials for millimetre and submillimetre optics , 1996 .
[21] D. Bouwmeester,et al. On Quantum Superpositions in an Optomechanical System , 2008 .
[22] Christoph Simon,et al. Towards quantum superpositions of a mirror , 2004 .
[23] D. Bouwmeester,et al. Creating and verifying a quantum superposition in a micro-optomechanical system , 2008, 0807.1834.
[24] S. A. Werner,et al. Observation of Gravitationally Induced Quantum Interference , 1975 .
[25] Angelo Bassi,et al. Models of Wave-function Collapse, Underlying Theories, and Experimental Tests , 2012, 1204.4325.
[26] J. A. Crowther. The Evolution of Physics: , 1938, Nature.
[27] R. Xu,et al. Theory of open quantum systems , 2002 .
[28] Florian Blaser,et al. Cavity cooling of an optically levitated submicron particle , 2013, Proceedings of the National Academy of Sciences.
[29] R. Penrose. On Gravity's role in Quantum State Reduction , 1996 .
[30] E. Joos,et al. The emergence of classical properties through interaction with the environment , 1985 .
[31] Quantum theory of nonrelativistic particles interacting with gravity. , 1995, Physical review. D, Particles and fields.
[32] J. C. Hafele,et al. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains , 1972, Science.
[33] Anton Zeilinger,et al. Decoherence of matter waves by thermal emission of radiation , 2004, Nature.
[34] T. G. Downes,et al. Gravitationally Induced Decoherence of Optical Entanglement , 2006, quant-ph/0609139.
[35] C. Lämmerzahl. A Hamilton operator for quantum optics in gravitational fields , 1995 .
[36] Caslav Brukner,et al. General relativistic effects in quantum interference of photons , 2012, 1206.0965.
[37] A. Einstein,et al. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes , 1911 .
[38] D. Rugar,et al. Optical clocks and relativity , 2013 .
[39] S. Reynaud,et al. Ultimate decoherence border for matter-wave interferometry. , 2005, Physical review letters.
[40] Marcel Mayor,et al. Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. , 2013, Physical chemistry chemical physics : PCCP.
[41] R Kaltenbaek,et al. Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.
[42] M. Blencowe,et al. Effective field theory approach to gravitationally induced decoherence. , 2012, Physical review letters.