Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows

We present a numerical study of a stabilization method for computing confined and free-surface flows of highly elastic viscoelastic fluids. In this approach, the constitutive equation based on the conformation tensor, which is used to define the viscoelastic model, is modified introducing an evolution equation for the square-root conformation tensor. Both confined and free-surface flows are considered, using two different numerical codes. A finite volume method is used for confined flows and a finite difference code developed in the context of the marker-and-cell method is used for confined and free-surface flows. The implementation of the square-root formulation was performed in both numerical schemes and discussed in terms of its ability and efficiency to compute steady and transient viscoelastic fluid flows. The numerical results show that the square-root formulation performs efficiently in the tested benchmark problems at high-Weissenberg number flows, such as the lid-driven cavity flow, the flow around a confined cylinder, the cross-slot flow and the impacting drop free surface problem.

[1]  C. M. Oishi,et al.  Implicit Methods for Simulating Low Reynolds Number Free Surface Flows: Improvements on MAC-Type Methods , 2014 .

[2]  Daniel D. Joseph,et al.  Fluid Dynamics Of Viscoelastic Liquids , 1990 .

[3]  Yong Jung Kim A MATHEMATICAL INTRODUCTION TO FLUID MECHANICS , 2008 .

[4]  Lance R. Collins,et al.  An improved algorithm for simulating three-dimensional, viscoelastic turbulence , 2006 .

[5]  G. Fuller,et al.  Extensional Viscosity Measurements for Low‐Viscosity Fluids , 1987 .

[6]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[7]  Bülent Karasözen,et al.  Finite volume simulation of viscoelastic laminar flow in a lid-driven cavity , 2009 .

[8]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[9]  D. Cruz,et al.  Analytical solution of steady 2D wall-free extensional flows of UCM fluids , 2015 .

[10]  F. Pinho,et al.  The kernel-conformation constitutive laws , 2011 .

[11]  J. Marchal,et al.  Loss of evolution in the flow of viscoelastic fluids , 1986 .

[12]  M.A. Hulsen Some properties and analytical expressions for plane flow of leonov and giesekus models , 1988 .

[13]  M. Schäfer,et al.  A comparison of stabilisation approaches for finite-volume simulation of viscoelastic fluid flow , 2013 .

[14]  Fernando T. Pinho,et al.  The flow of viscoelastic fluids past a cylinder : finite-volume high-resolution methods , 2001 .

[15]  N. Phan-Thien,et al.  Galerkin/least-square finite-element methods for steady viscoelastic flows , 1999 .

[16]  M. D. Deshpande,et al.  FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .

[17]  Robert A. Brown,et al.  Report on the VIIIth international workshop on numerical methods in viscoelastic flows , 1994 .

[18]  Robert J. Poole Scaling of purely-elastic instabilities in viscoelastic lid-driven cavity flow , 2010 .

[19]  A. Fortin,et al.  An adaptive remeshing strategy for viscoelastic fluid flow simulations , 2008 .

[20]  K. Cho Vector decomposition of the evolution equations of the conformation tensor of Maxwellian fluids , 2009 .

[21]  R. Glowinski,et al.  On the simulation of a time‐dependent cavity flow of an Oldroyd‐B fluid , 2009 .

[22]  Marek Behr,et al.  A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation , 2007 .

[23]  P. Arratia,et al.  Elastic instabilities of polymer solutions in cross-channel flow. , 2006, Physical review letters.

[24]  M. Reiner,et al.  The Deborah Number , 1964 .

[25]  Robert J. Poole,et al.  A new viscoelastic benchmark flow: Stationary bifurcation in a cross-slot , 2014 .

[26]  Jie Ouyang,et al.  Lattice Boltzmann method for the simulation of viscoelastic fluid flows over a large range of Weissenberg numbers , 2013 .

[27]  Jinchao Xu,et al.  New formulations, positivity preserving discretizations and stability analysis for non-newtonian flow models , 2006 .

[28]  Youngdon Kwon,et al.  Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations , 2004 .

[29]  M. Behr,et al.  Fully-implicit log-conformation formulation of constitutive laws , 2014, 1406.6988.

[30]  F. Pinho,et al.  The log-conformation tensor approach in the finite-volume method framework , 2009 .

[31]  M. Deville,et al.  A new extended matrix logarithm formulation for the simulation of viscoelastic fluids by spectral elements , 2010 .

[32]  A. Beris,et al.  Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows , 1995 .

[33]  M. Renardy,et al.  Symmetric factorization of the conformation tensor in viscoelastic fluid models , 2010, 1006.3488.

[34]  Kyung Hyun Ahn,et al.  An efficient iterative solver and high-resolution computations of the Oldroyd-B fluid flow past a confined cylinder , 2004 .

[35]  P. Saramito On a modified non-singular log-conformation formulation for Johnson–Segalman viscoelastic fluids , 2014 .

[36]  F. Pinho,et al.  A convergent and universally bounded interpolation scheme for the treatment of advection , 2003 .

[37]  M. F. Tomé,et al.  Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows , 2011 .

[38]  R. G. Owens,et al.  A numerical study of the SPH method for simulating transient viscoelastic free surface flows , 2006 .

[39]  R. Poole The Deborah and Weissenberg numbers , 2012 .

[40]  A. Acrivos,et al.  Steady flows in rectangular cavities , 1967, Journal of Fluid Mechanics.

[41]  Raanan Fattal,et al.  Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation , 2005 .

[42]  T. Jiang,et al.  The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate , 2010 .

[43]  M. Manzari,et al.  An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows , 2007 .

[44]  O. Hinrichsen,et al.  Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using the log-conformation reformulation in OpenFOAM® , 2014 .

[45]  Manuel A. Alves,et al.  A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows , 2015, J. Comput. Phys..

[46]  Raanan Fattal,et al.  Constitutive laws for the matrix-logarithm of the conformation tensor , 2004 .

[47]  M. F. Tomé,et al.  Numerical simulation of drop impact and jet buckling problems using the eXtended Pom–Pom model , 2012 .

[48]  F. Pinho,et al.  Numerical simulation of non-linear elastic flows with a general collocated finite-volume method , 1998 .

[49]  R. Poole,et al.  Purely elastic flow asymmetries. , 2007, Physical review letters.

[50]  H. Damanik,et al.  A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems , 2010 .

[51]  A. Lozinski,et al.  An energy estimate for the Oldroyd B model: theory and applications , 2003 .

[52]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids: Fluid mechanics , 1987 .

[53]  J. White,et al.  Dynamics of viscoelastic fluids, melt fracture, and the rheology of fiber spinning , 1964 .

[54]  F. Pinho,et al.  Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows , 2000 .

[55]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids: Kinetic theory , 1987 .