The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease

[1]  P. Brundin,et al.  Can Parkinson's disease pathology be propagated from one neuron to another? , 2012, Progress in Neurobiology.

[2]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[3]  A. Singleton,et al.  Repeat expansion in C9ORF72 in Alzheimer's disease. , 2012, The New England journal of medicine.

[4]  J. Trojanowski,et al.  Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration , 2011, Nature Reviews Neuroscience.

[5]  A. Caccamo,et al.  Cognitive decline typical of frontotemporal lobar degeneration in transgenic mice expressing the 25-kDa C-terminal fragment of TDP-43. , 2012, The American journal of pathology.

[6]  J. Shorter,et al.  The elusive middle domain of Hsp104 and ClpB: location and function. , 2012, Biochimica et biophysica acta.

[7]  D. Cleveland,et al.  Understanding the role of TDP-43 and FUS/TLS in ALS and beyond , 2011, Current Opinion in Neurobiology.

[8]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[9]  Fei Wang,et al.  Genetic Informational RNA Is Not Required for Recombinant Prion Infectivity , 2011, Journal of Virology.

[10]  T. Ferman,et al.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 , 2011, Acta Neuropathologica.

[11]  P. Harrison,et al.  Origins and Evolution of the HET-s Prion-Forming Protein: Searching for Other Amyloid-Forming Solenoids , 2011, PloS one.

[12]  S. Warren,et al.  Local RNA Translation at the Synapse and in Disease , 2011, The Journal of Neuroscience.

[13]  J. Trojanowski,et al.  A yeast functional screen predicts new candidate ALS disease genes , 2011, Proceedings of the National Academy of Sciences.

[14]  Virander S. Chauhan,et al.  Delineation of the Core Aggregation Sequences of TDP‐43 C‐Terminal Fragment , 2011, ChemBioChem.

[15]  S. Mahal,et al.  Prions on the move , 2011, EMBO reports.

[16]  David W. Colby,et al.  De novo generation of prion strains , 2011, Nature Reviews Microbiology.

[17]  D. Cleveland,et al.  The Seeds of Neurodegeneration: Prion-like Spreading in ALS , 2011, Cell.

[18]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[19]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[20]  S. Mahal,et al.  Mutability of prions , 2011, EMBO reports.

[21]  J. Shorter,et al.  The Mammalian Disaggregase Machinery: Hsp110 Synergizes with Hsp70 and Hsp40 to Catalyze Protein Disaggregation and Reactivation in a Cell-Free System , 2011, PloS one.

[22]  N. Shneider,et al.  The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. , 2011, The Journal of clinical investigation.

[23]  E. Ross,et al.  Strategies for identifying new prions in yeast , 2011, Prion.

[24]  R. Wickner,et al.  The yeast prions [PSI+] and [URE3] are molecular degenerative diseases , 2011, Prion.

[25]  Chris Sander,et al.  RNA targets of wild-type and mutant FET family proteins , 2011, Nature Structural &Molecular Biology.

[26]  Olaf Ansorge,et al.  FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. , 2011, Brain : a journal of neurology.

[27]  Fei Wang,et al.  Seeding specificity and ultrastructural characteristics of infectious recombinant prions. , 2011, Biochemistry.

[28]  Bonnie Berger,et al.  Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. , 2011, Molecular cell.

[29]  C. Haass,et al.  TDP-43 and FUS: a nuclear affair , 2011, Trends in Neurosciences.

[30]  Chen Wang,et al.  An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity , 2011, Nature Structural &Molecular Biology.

[31]  A. Gitler,et al.  RNA-binding proteins with prion-like domains in ALS and FTLD-U , 2011, Prion.

[32]  Z. Du,et al.  A Small, Glutamine-Free Domain Propagates the [SWI+] Prion in Budding Yeast , 2011, Molecular and Cellular Biology.

[33]  Daniel F Tardiff,et al.  A Yeast Model of FUS/TLS-Dependent Cytotoxicity , 2011, PLoS biology.

[34]  Robert H. Brown,et al.  Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis , 2011, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[35]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[36]  A. Gitler,et al.  Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS , 2011, PLoS biology.

[37]  R. Wickner,et al.  FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis , 2011, Protein & Cell.

[38]  J. Trojanowski,et al.  A “Two-hit” Hypothesis for Inclusion Formation by Carboxyl-terminal Fragments of TDP-43 Protein Linked to RNA Depletion and Impaired Microtubule-dependent Transport* , 2011, The Journal of Biological Chemistry.

[39]  N. Nukina,et al.  A Seeding Reaction Recapitulates Intracellular Formation of Sarkosyl-insoluble Transactivation Response Element (TAR) DNA-binding Protein-43 Inclusions*♦ , 2011, The Journal of Biological Chemistry.

[40]  R. Wickner,et al.  Suicidal [PSI+] is a lethal yeast prion , 2011, Proceedings of the National Academy of Sciences.

[41]  Fei Wang,et al.  Conversion of bacterially expressed recombinant prion protein. , 2011, Methods.

[42]  C. Wessig,et al.  C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany , 2011, Neurobiology of Aging.

[43]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[44]  Jane Y. Wu,et al.  Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy , 2011, Protein & Cell.

[45]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[46]  S. Lindquist,et al.  Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB) , 2011, Proceedings of the National Academy of Sciences.

[47]  R. Baloh,et al.  Implications of the prion-related Q/N domains in TDP-43 and FUS , 2011, Prion.

[48]  R. Panush Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis , 2011 .

[49]  S. Akbarian,et al.  The C-Terminal TDP-43 Fragments Have a High Aggregation Propensity and Harm Neurons by a Dominant-Negative Mechanism , 2010, PloS one.

[50]  E. Kandel,et al.  Essential Role of Coiled Coils for Aggregation and Activity of Q/N-Rich Prions and PolyQ Proteins , 2010, Cell.

[51]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[52]  Mick F. Tuite,et al.  The prion hypothesis: from biological anomaly to basic regulatory mechanism , 2010, Nature Reviews Molecular Cell Biology.

[53]  Frank Baumann,et al.  Peripherally Applied Aβ-Containing Inoculates Induce Cerebral β-Amyloidosis , 2010, Science.

[54]  Robert H. Brown,et al.  Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. , 2010, Human molecular genetics.

[55]  J. Trojanowski,et al.  Extensive FUS‐Immunoreactive Pathology in Juvenile Amyotrophic Lateral Sclerosis with Basophilic Inclusions , 2010, Brain pathology.

[56]  S. Lindquist,et al.  Epigenetics in the Extreme: Prions and the Inheritance of Environmentally Acquired Traits , 2010, Science.

[57]  L. Petrucelli,et al.  Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue , 2010, PloS one.

[58]  I. Mackenzie,et al.  TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia , 2010, The Lancet Neurology.

[59]  Martin L. Duennwald,et al.  Countering amyloid polymorphism and drug resistance with minimal drug cocktails , 2010, Prion.

[60]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[61]  J. Schulz,et al.  TDP-43-Mediated Neuron Loss In Vivo Requires RNA-Binding Activity , 2010, PloS one.

[62]  I. Mackenzie,et al.  ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import , 2010, The EMBO journal.

[63]  J. Lowe,et al.  Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations , 2010, Neurology.

[64]  H. Hutter,et al.  Neurotoxic effects of TDP-43 overexpression in C. elegans. , 2010, Human molecular genetics.

[65]  A. Eisen,et al.  Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis , 2010, Muscle & nerve.

[66]  E. Buratti,et al.  The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation , 2010, RNA biology.

[67]  Markus Tolnay,et al.  The propagation of prion-like protein inclusions in neurodegenerative diseases , 2010, Trends in Neurosciences.

[68]  M. Diamond,et al.  Interaction with Polyglutamine Aggregates Reveals a Q/N-rich Domain in TDP-43* , 2010, The Journal of Biological Chemistry.

[69]  J. Shorter Emergence and natural selection of drug-resistant prions. , 2010, Molecular bioSystems.

[70]  J. Trojanowski,et al.  TDP-43 Mediates Degeneration in a Novel Drosophila Model of Disease Caused by Mutations in VCP/p97 , 2010, The Journal of Neuroscience.

[71]  K. Volkov,et al.  Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1 , 2010, Proceedings of the National Academy of Sciences.

[72]  R. Petersen,et al.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration , 2010, Acta Neuropathologica.

[73]  Z. Wszolek,et al.  De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis , 2010, Human mutation.

[74]  I. Mackenzie,et al.  FUS‐Immunoreactive Intranuclear Inclusions in Neurodegenerative Disease , 2010, Brain pathology.

[75]  S. Lindquist,et al.  Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation , 2010, Proceedings of the National Academy of Sciences.

[76]  O. King,et al.  Prion-like disorders: blurring the divide between transmissibility and infectivity , 2010, Journal of Cell Science.

[77]  J. Highley,et al.  Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. , 2010, Archives of neurology.

[78]  John Q. Trojanowski,et al.  TAR DNA-binding protein 43 in neurodegenerative disease , 2010, Nature Reviews Neurology.

[79]  Ronald Melki,et al.  Prion-like transmission of protein aggregates in neurodegenerative diseases , 2010, Nature Reviews Molecular Cell Biology.

[80]  Susan Lindquist,et al.  Prions, protein homeostasis, and phenotypic diversity. , 2010, Trends in cell biology.

[81]  Fei Wang,et al.  Generating a Prion with Bacterially Expressed Recombinant Prion Protein , 2010, Science.

[82]  G. Rouleau,et al.  Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. , 2010, Human molecular genetics.

[83]  Charles Weissmann,et al.  Darwinian Evolution of Prions in Cell Culture , 2010, Science.

[84]  Eric R. Kandel,et al.  Aplysia CPEB Can Form Prion-like Multimers in Sensory Neurons that Contribute to Long-Term Facilitation , 2010, Cell.

[85]  David Eisenberg,et al.  Identifying the amylome, proteins capable of forming amyloid-like fibrils , 2010, Proceedings of the National Academy of Sciences.

[86]  H. True,et al.  The Spontaneous Appearance Rate of the Yeast Prion [PSI+] and Its Implications for the Evolution of the Evolvability Properties of the [PSI+] System , 2010, Genetics.

[87]  Y. Kuroiwa,et al.  The RNA-binding protein FUS/TLS is a common aggregate-interacting protein in polyglutamine diseases , 2010, Neuroscience Research.

[88]  Jane Y. Wu,et al.  A Drosophila model for TDP-43 proteinopathy , 2010, Proceedings of the National Academy of Sciences.

[89]  S. Finkbeiner,et al.  Cytoplasmic Mislocalization of TDP-43 Is Toxic to Neurons and Enhanced by a Mutation Associated with Familial Amyotrophic Lateral Sclerosis , 2010, The Journal of Neuroscience.

[90]  Wenlung Chen,et al.  Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. , 2010, Journal of the American Chemical Society.

[91]  J. Shorter,et al.  Applying Hsp104 to protein-misfolding disorders. , 2010, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[92]  David W. Colby,et al.  Protease-Sensitive Synthetic Prions , 2010, PLoS pathogens.

[93]  B. Dubois,et al.  FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. , 2010, Journal of Alzheimer's disease : JAD.

[94]  Lawrence Rajendran,et al.  The Transcellular Spread of Cytosolic Amyloids, Prions, and Prionoids , 2009, Neuron.

[95]  M. Kiernan,et al.  FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[96]  David W. Colby,et al.  Design and construction of diverse mammalian prion strains , 2009, Proceedings of the National Academy of Sciences.

[97]  J. Manley,et al.  The TET family of proteins: functions and roles in disease. , 2009, Journal of molecular cell biology.

[98]  James A. Toombs,et al.  Compositional Determinants of Prion Formation in Yeast , 2009, Molecular and Cellular Biology.

[99]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[100]  E. Cohen,et al.  A kinetic assessment of the C. elegans amyloid disaggregation activity enables uncoupling of disassembly and proteolysis , 2009, Protein science : a publication of the Protein Society.

[101]  S. Prusiner,et al.  Continuous Quinacrine Treatment Results in the Formation of Drug-Resistant Prions , 2009, PLoS pathogens.

[102]  G. Comi,et al.  Mutations of FUS gene in sporadic amyotrophic lateral sclerosis , 2009, Journal of Medical Genetics.

[103]  D. Munoz,et al.  FUS pathology in basophilic inclusion body disease , 2009, Acta Neuropathologica.

[104]  V. Meininger,et al.  Mutations in FUS cause FALS and SALS in French and French Canadian populations , 2009, Neurology.

[105]  Martin L. Duennwald,et al.  A synergistic small molecule combination directly eradicates diverse prion strain structures , 2009, Nature chemical biology.

[106]  A. L. La Spada,et al.  ALS motor phenotype heterogeneity, focality, and spread , 2009, Neurology.

[107]  David Eisenberg,et al.  Molecular mechanisms for protein-encoded inheritance , 2009, Nature Structural &Molecular Biology.

[108]  Brian Spencer,et al.  Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein , 2009, Proceedings of the National Academy of Sciences.

[109]  A. Aguzzi Cell biology: Beyond the prion principle , 2009, Nature.

[110]  Martin Beibel,et al.  Transmission and spreading of tauopathy in transgenic mouse brain , 2009, Nature Cell Biology.

[111]  A. Gitler,et al.  TDP-43 Is Intrinsically Aggregation-prone, and Amyotrophic Lateral Sclerosis-linked Mutations Accelerate Aggregation and Increase Toxicity* , 2009, The Journal of Biological Chemistry.

[112]  Junjun Zhang,et al.  BioMart Central Portal—unified access to biological data , 2009, Nucleic Acids Res..

[113]  L. Petrucelli,et al.  Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity , 2009, Proceedings of the National Academy of Sciences.

[114]  O. King,et al.  A Systematic Survey Identifies Prions and Illuminates Sequence Features of Prionogenic Proteins , 2009, Cell.

[115]  D. Cleveland,et al.  Rethinking ALS: The FUS about TDP-43 , 2009, Cell.

[116]  J. Masel,et al.  The Strength of Selection Against the Yeast Prion [PSI+] , 2009, Genetics.

[117]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[118]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[119]  S. Liebman,et al.  The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion , 2009, Nature Cell Biology.

[120]  W. Bradley,et al.  Cyanobacteria and BMAA exposure from desert dust: A possible link to sporadic ALS among Gulf War veterans , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[121]  Roy Parker,et al.  P bodies promote stress granule assembly in Saccharomyces cerevisiae , 2008, The Journal of cell biology.

[122]  O. Namy,et al.  Epigenetic control of polyamines by the prion [PSI+] , 2008, Nature Cell Biology.

[123]  Y. Chook,et al.  Modular Organization and Combinatorial Energetics of Proline–Tyrosine Nuclear Localization Signals , 2008, PLoS biology.

[124]  Andrew D. Steele,et al.  Direct and selective elimination of specific prions and amyloids by 4,5-dianilinophthalimide and analogs , 2008, Proceedings of the National Academy of Sciences.

[125]  I-Fan Wang,et al.  TDP‐43, the signature protein of FTLD‐U, is a neuronal activity‐responsive factor , 2008, Journal of neurochemistry.

[126]  S. Lindquist,et al.  A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity , 2008, Proceedings of the National Academy of Sciences.

[127]  Haijing Yu,et al.  Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae , 2008, Nature Genetics.

[128]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[129]  E. Buratti,et al.  Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. , 2008, Frontiers in bioscience : a journal and virtual library.

[130]  J. Trojanowski,et al.  TDP-43 Proteinopathies: Neurodegenerative Protein Misfolding Diseases without Amyloidosis , 2007, Neurosignals.

[131]  A. Gitler Beer and Bread to Brains and Beyond: Can Yeast Cells Teach Us about Neurodegenerative Disease? , 2007, Neurosignals.

[132]  J. Shorter Hsp104: A Weapon to Combat Diverse Neurodegenerative Disorders , 2007, Neurosignals.

[133]  Barry J Dickson,et al.  Function of the Drosophila CPEB protein Orb2 in long-term courtship memory , 2007, Nature Neuroscience.

[134]  John Collinge,et al.  A General Model of Prion Strains and Their Pathogenicity , 2007, Science.

[135]  P. Jin,et al.  RNA-Binding Proteins hnRNP A2/B1 and CUGBP1 Suppress Fragile X CGG Premutation Repeat-Induced Neurodegeneration in a Drosophila Model of FXTAS , 2007, Neuron.

[136]  R. Wickner,et al.  Prions of fungi: inherited structures and biological roles , 2007, Nature Reviews Microbiology.

[137]  M. Maddelein,et al.  A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. , 2007, Molecular cell.

[138]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[139]  S. Saupe A Short History of Small s , 2007, Prion.

[140]  R. Wickner,et al.  Yeast Prions , 2007, Prion.

[141]  S. Liebman,et al.  "Prion-proof" for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132-405) induces [PIN+]. , 2007, Journal of molecular biology.

[142]  David Eisenberg,et al.  Atomic structures of amyloid cross-beta spines reveal varied steric zippers. , 2007, Nature.

[143]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[144]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[145]  D. Walsh,et al.  Exogenous Induction of Cerebral ß-Amyloidogenesis Is Governed by Agent and Host , 2006, Science.

[146]  Ehud Cohen,et al.  Opposing Activities Protect Against Age-Onset Proteotoxicity , 2006, Science.

[147]  M. Mattson,et al.  Inducible proteopathies , 2006, Trends in Neurosciences.

[148]  Y. Chook,et al.  Rules for Nuclear Localization Sequence Recognition by Karyopherinβ2 , 2006, Cell.

[149]  S. Lindquist,et al.  Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. , 2006, Molecular cell.

[150]  David Eisenberg,et al.  Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[151]  P. Hagerman,et al.  Protein composition of the intranuclear inclusions of FXTAS. , 2006, Brain : a journal of neurology.

[152]  David Eisenberg,et al.  Structural models of amyloid-like fibrils. , 2006, Advances in protein chemistry.

[153]  Yuh Min Chook,et al.  Rules for nuclear localization sequence recognition by karyopherin beta 2. , 2006, Cell.

[154]  T. Takumi,et al.  TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines , 2005, Journal of Cell Science.

[155]  J. Cowell,et al.  Mass spectroscopy identifies the splicing-associated proteins, PSF, hnRNP H3, hnRNP A2/B1, and TLS/FUS as interacting partners of the ZNF198 protein associated with rearrangement in myeloproliferative disease. , 2005, Experimental cell research.

[156]  U. Baxa,et al.  Prion generation in vitro: amyloid of Ure2p is infectious , 2005, The EMBO journal.

[157]  Eric D Ross,et al.  Primary sequence independence for prion formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[158]  Jaime Prilusky,et al.  FoldIndex copyright: a simple tool to predict whether a given protein sequence is intrinsically unfolded , 2005, Bioinform..

[159]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[160]  R. Wickner,et al.  Yeast prions [URE3] and [PSI+] are diseases. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[161]  Susan Lindquist,et al.  Prions as adaptive conduits of memory and inheritance , 2005, Nature Reviews Genetics.

[162]  F. Moreau-Gachelin,et al.  Delocalization of the multifunctional RNA splicing factor TLS/FUS in hippocampal neurones: exclusion from the nucleus and accumulation in dendritic granules and spine heads , 2005, Neuroscience Letters.

[163]  G. Hicks,et al.  The RNA Binding Protein TLS Is Translocated to Dendritic Spines by mGluR5 Activation and Regulates Spine Morphology , 2005, Current Biology.

[164]  D. Kryndushkin,et al.  Nonsense Suppression in Yeast Cells Overproducing Sup35 (eRF3) Is Caused by Its Non-heritable Amyloids* , 2005, Journal of Biological Chemistry.

[165]  A. Chiò,et al.  Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. , 2005, Brain : a journal of neurology.

[166]  G. Fink A Transforming Principle , 2005, Cell.

[167]  J. Beckmann,et al.  FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded , 2005 .

[168]  P. Anderson,et al.  Stress granule assembly is mediated by prion-like aggregation of TIA-1. , 2004, Molecular biology of the cell.

[169]  Heather L. True,et al.  Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits , 2004, Nature.

[170]  Eric D. Ross,et al.  Scrambled Prion Domains Form Prions and Amyloid , 2004, Molecular and Cellular Biology.

[171]  F. Cohen,et al.  Synthetic Mammalian Prions , 2004, Science.

[172]  Peter Chien,et al.  Emerging principles of conformation-based prion inheritance. , 2004, Annual review of biochemistry.

[173]  R. Diaz-Avalos,et al.  Protein-only transmission of three yeast prion strains , 2004, Nature.

[174]  Roger Cooke,et al.  Conformational variations in an infectious protein determine prion strain differences , 2004, Nature.

[175]  E. Kandel,et al.  A Neuronal Isoform of the Aplysia CPEB Has Prion-Like Properties , 2003, Cell.

[176]  S. Supattapone,et al.  RNA molecules stimulate prion protein conversion , 2003, Nature.

[177]  D. Eisenberg,et al.  Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process , 2003, Nature Structural Biology.

[178]  Aviv Bergman,et al.  THE EVOLUTION OF THE EVOLVABILITY PROPERTIES OF THE YEAST PRION [PSI+] , 2003, Evolution; international journal of organic evolution.

[179]  M. Gerstein,et al.  A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes , 2003, Genome Biology.

[180]  Carl W. Cotman,et al.  Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis , 2003, Science.

[181]  P. Lansbury,et al.  Neurodegenerative disease: Amyloid pores from pathogenic mutations , 2002, Nature.

[182]  David Eisenberg,et al.  3D domain swapping: As domains continue to swap , 2002, Protein science : a publication of the Protein Society.

[183]  Alasdair C Steven,et al.  Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[184]  V. Smirnov,et al.  The SUP 35 Omnipotent Suppressor Gene Is Involved in the Maintenance of the Non-Mendelian Determinant [ psi ' ] in the Yeast Saccharomyces cerevisiae , 2002 .

[185]  Jonathan S Weissman,et al.  Multiple Gln/Asn-Rich Prion Domains Confer Susceptibility to Induction of the Yeast [PSI+] Prion , 2001, Cell.

[186]  D. Eisenberg,et al.  Design of three-dimensional domain-swapped dimers and fibrous oligomers. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[187]  J. Weissman,et al.  A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[188]  H. True,et al.  A yeast prion provides a mechanism for genetic variation and phenotypic diversity , 2000, Nature.

[189]  S. Lindquist,et al.  Nucleated conformational conversion and the replication of conformational information by a prion determinant. , 2000, Science.

[190]  R. Wickner,et al.  Prions: Portable prion domains , 2000, Current Biology.

[191]  S. Lindquist,et al.  Creating a protein-based element of inheritance. , 2000, Science.

[192]  J. Weissman,et al.  Molecular Basis of a Yeast Prion Species Barrier , 2000, Cell.

[193]  S. Lindquist,et al.  Rnq1: an epigenetic modifier of protein function in yeast. , 2000, Molecular cell.

[194]  J. Varley,et al.  Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma , 1999, Oncogene.

[195]  M. Tuite,et al.  Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion‐mediated mechanism , 1999, The EMBO journal.

[196]  R. Wickner,et al.  Prion domain initiation of amyloid formation in vitro from native Ure2p. , 1999, Science.

[197]  R. Wickner,et al.  The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[198]  D. Immanuel,et al.  TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. , 1997, Journal of cell science.

[199]  P. Lantos,et al.  Prion protein immunocytochemistry – UK five centre consensus report , 1997, Neuropathology and applied neurobiology.

[200]  P. Chambon,et al.  hTAF(II)68, a novel RNA/ssDNA‐binding protein with homology to the pro‐oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. , 1996, The EMBO journal.

[201]  R. Wickner,et al.  Prion-Inducing Domain of Yeast Ure2p and Protease Resistance of Ure2p in Prion-Containing Cells , 1995, Science.

[202]  K. Jellinger,et al.  Neuropathological Diagnostic Criteria for Creutzfeldt‐Jakob Disease (CJD) and Other Human Spongiform Encephalopathies (Prion Diseases) , 1995, Brain pathology.

[203]  V. Smirnov,et al.  The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. , 1994, Genetics.

[204]  N. Mandahl,et al.  Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma , 1993, Nature.

[205]  Y. Chernoff,et al.  Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non‐overlapping functional regions in the encoded protein , 1993, Molecular microbiology.

[206]  G. Thomas,et al.  Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours , 1992, Nature.

[207]  J. Keene,et al.  RNA recognition: towards identifying determinants of specificity. , 1991, Trends in biochemical sciences.

[208]  S. Prusiner,et al.  Some speculations about prions, amyloid, and Alzheimer's disease. , 1984, The New England journal of medicine.