A data link control protocol for LEO satellite networks providing a reliable datagram service

A data link control protocol for low earth orbit satellite networks has been developed to overcome throughput limitations inherent in event-based positive acknowledgment automatic-repeat-request class protocols. This was accomplished by relaxing a reliability constraint, specifically, the in-sequence delivery constraint. This relaxation results in a new class of link layer service, that of reliable datagram, and permits a fresh approach to link layer protocol design. The authors present one such protocol, the low altitude multiple satellite data link control (LAMS-DLC) protocol. They derive the throughput efficiency of LAMS-DLC and compare the results with HDLC (selective reject). The analysis is verified using an event-based simulation. Measurements suggest that LAMS-DLC provides near optimal throughput efficiencies in the target environment, while using significantly less buffer space than that required for HDLC-SREJ. >

[1]  W. D. Brodd,et al.  Data link control improvements for satellite transmission , 1983 .

[2]  M. Easton Design Choices for Selective-Repeat Retransmission Protocols , 1981, IEEE Trans. Commun..

[3]  Philip S. Yu,et al.  A Hybrid ARQ Scheme with Parity Retransmission for Error Control of Satellite Channels , 1982, IEEE Trans. Commun..

[4]  Don Towsley A Statistical Analysis of ARQ Protocols Operating in a Nonindependent Error Environment , 1981, IEEE Trans. Commun..

[5]  Fred Halsall,et al.  Data communications, computer networks and open systems (3. ed.) , 1995, Electronic-systems engineering series.

[6]  J. J. Stone MULTIPLE-BURST ERROR CORRECTION WITH THE CHINESE REMAINDER THEOREM' , 1963 .

[7]  K. Okuno,et al.  Automatic repeat request/adaptive forward error correction system for satellite communications , 1989 .

[8]  P.F. Linington Fundamentals of the layer service definitions and protocol specifications , 1983, Proceedings of the IEEE.

[9]  A. Sastry Performance of Hybrid Error Control Schemes on Satellite Channels , 1975, IEEE Trans. Commun..

[10]  Shu Lin,et al.  The Analysis of Some Selective-Repeat ARQ Schemes with Finite Receiver Buffer , 1981, IEEE Trans. Commun..

[11]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[12]  Y. Y. Wang,et al.  Experimental results of 20-Mb/s FSK digital transmission on 4-GHz (TD) radio , 1983, The Bell System Technical Journal.

[13]  C. Ward,et al.  Performance of LAMS-DLC, a protocol for low altitude satellite networks , 1991, MILCOM 91 - Conference record.

[14]  Dieter Baum Performance analysis of a satellite communications backchannel architecture , 1986, SIGCOMM '86.

[15]  Godred Fairhurst Operation of HDLC ABM in harsh error environments. A robust extension , 1991 .

[16]  David M. Mandelbaum,et al.  An adaptive-feedback coding scheme using incremental redundancy (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[17]  O.C.M.B. Duarte,et al.  A new selective repeat scheme-actual environment performance analysis , 1988, IEEE International Conference on Communications, - Spanning the Universe..

[18]  I. Reed,et al.  Polynomial Codes Over Certain Finite Fields , 1960 .

[19]  John J. Metzner,et al.  Efficient Selective Repeat ARQ Strategies for Very Noisy and Fluctuating Channels , 1985, IEEE Trans. Commun..

[20]  David Haccoun,et al.  Sequential decoding with ARQ and code combining: a robust hybrid FEC/ARQ system , 1988, IEEE Trans. Commun..

[21]  Kenneth Brayer,et al.  An investigation of ARQ and hybrid FEC-ARQ on an experimental high latitude meteor burst channel , 1989, IEEE Trans. Commun..

[22]  Philip S. Yu,et al.  An Effective Error Control Scheme for Satellite Communications , 1980, IEEE Trans. Commun..

[23]  Samir Kallel,et al.  Analysis of a type II hybrid ARQ scheme with code combining , 1990, IEEE Trans. Commun..

[24]  Don Towsley,et al.  The Stutter Go Back-N ARQ Protocol , 1979, IEEE Trans. Commun..

[25]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[26]  Samir Kallel Analysis of memory and incremental redundancy ARQ schemes over a nonstationary channel , 1992, IEEE Trans. Commun..

[27]  Katsuo Ikeda,et al.  Study on the Throughput Limits over the HDLC Protocol , 1982 .

[28]  M. Easton Batch Throughput Efficiency of ADCCP/HDLC/SDLC Selective Reject Protocols , 1980, IEEE Trans. Commun..

[29]  Salvatore D. Morgera,et al.  A New Error Control Scheme for Hybrid ARQ Systems , 1986, IEEE Trans. Commun..

[30]  Miltiades E. Anagnostou,et al.  Performance Analysis of the Selective Repeat ARQ Protocol , 1986, IEEE Trans. Commun..

[31]  Christopher Ward,et al.  The LAMS-DLC ARQ protocol , 1991, SIGCOMM 1991.

[32]  Fred Halsall,et al.  Data communications, computer networks and open systems (3. ed.) , 1995, Electronic-systems engineering series.

[33]  Jin-Fu Chang,et al.  Analysis of ARQ protocols via signal flow graphs , 1989, IEEE Trans. Commun..

[34]  Andrew J. Viterbi,et al.  Convolutional Codes and Their Performance in Communication Systems , 1971 .

[35]  Mischa Schwartz,et al.  Telecommunication networks: protocols, modeling and analysis , 1986 .

[36]  Jack K. Wolf,et al.  Application of Code Combining to a Selective-Repeat ARQ Link , 1985, MILCOM 1985 - IEEE Military Communications Conference.

[37]  Akira Shiozaki,et al.  A hybrid ARQ scheme with adaptive forward error correction for satellite communications , 1991, IEEE Trans. Commun..