The new hadley centre climate model (HadGEM1) : Evaluation of coupled simulations

Abstract A new coupled general circulation climate model developed at the Met Office's Hadley Centre is presented, and aspects of its performance in climate simulations run for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) documented with reference to previous models. The Hadley Centre Global Environmental Model version 1 (HadGEM1) is built around a new atmospheric dynamical core; uses higher resolution than the previous Hadley Centre model, HadCM3; and contains several improvements in its formulation including interactive atmospheric aerosols (sulphate, black carbon, biomass burning, and sea salt) plus their direct and indirect effects. The ocean component also has higher resolution and incorporates a sea ice component more advanced than HadCM3 in terms of both dynamics and thermodynamics. HadGEM1 thus permits experiments including some interactive processes not feasible with HadCM3. The simulation of present-day mean climate in HadGEM1 is significantly better overall ...

[1]  G. Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology , 2006 .

[2]  J. Dukowicz,et al.  Implicit free‐surface method for the Bryan‐Cox‐Semtner ocean model , 1994 .

[3]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[4]  Max J. Suarez,et al.  A Delayed Action Oscillator for ENSO , 1988 .

[5]  J. D. de Gouw,et al.  Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment , 2004 .

[6]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[7]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[8]  G. Boer,et al.  Climate sensitivity and response , 2003 .

[9]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[10]  Julia Slingo,et al.  The role of the basic state in the ENSO–monsoon relationship and implications for predictability , 2005 .

[11]  V. Pope,et al.  The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 , 2000 .

[12]  M. Ringer,et al.  Evaluating the cloud response to climate change and current climate variability , 2003 .

[13]  Jason Lowe,et al.  Transient Climate Simulations with the HadGEM1 Climate Model: Causes of Past Warming and Future Climate Change , 2006 .

[14]  Matthew H. England,et al.  The Age of Water and Ventilation Timescales in a Global Ocean Model , 1995 .

[15]  Richard Essery,et al.  Explicit representation of subgrid heterogeneity in a GCM land surface scheme , 2003 .

[16]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[17]  W. Zenk,et al.  Circulation and Variability at the Southern Boundary of the Brazil Basin , 1999 .

[18]  James A. Carton,et al.  A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950–95. Part I: Methodology , 2000 .

[19]  R. Colvile,et al.  Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia , 2004 .

[20]  J. Slingo,et al.  Indian Ocean Climate and Dipole Variability in Hadley Centre Coupled GCMs , 2005 .

[21]  Stuart Webster,et al.  Improvements to the representation of orography in the Met Office Unified Model , 2003 .

[22]  Jonathan M. Gregory,et al.  Freshwater transports in HadCM3 , 2003 .

[23]  A. Semtner A MODEL FOR THE THERMODYNAMIC GROWTH OF SEA ICE IN NUMERICAL INVESTIGATIONS OF CLIMATE , 1975 .

[24]  H. Banks Indonesian Throughflow in a coupled climate model and the sensitivity of the heat budget and deep overturning , 2000 .

[25]  David P. Marshall,et al.  Do We Require Adiabatic Dissipation Schemes in Eddy-Resolving Ocean Models? , 1998 .

[26]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[27]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[28]  A. Jones,et al.  Climate sensitivity to black carbon aerosol from fossil fuel combustion , 2004 .

[29]  J. Toole,et al.  On the parameterization of equatorial turbulence , 1988 .

[30]  M. Collins,et al.  Projections of future climate change , 2002 .

[31]  W. Zenk,et al.  Antarctic Bottom Water Flow through the Hunter Channel , 1999 .

[32]  Peter J. Webster,et al.  Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98 , 1999, Nature.

[33]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[34]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[35]  John K. Dukowicz,et al.  Isoneutral Diffusion in a z-Coordinate Ocean Model , 1998 .

[36]  Gill Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of Variability and Regional Climate , 2006 .

[37]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[38]  Wolfgang Roether,et al.  A Tracer Study of the Thermohaline Circulation of the Eastern Mediterranean , 1994 .

[39]  Jonathan M. Gregory,et al.  Impact of an Eddy-Permitting Ocean Resolution on Control and Climate Change Simulations with a Global Coupled GCM. , 2004 .

[40]  Marika M. Holland,et al.  Simulating the ice‐thickness distribution in a coupled climate model , 2001 .

[41]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[42]  A. Gordon,et al.  Pathways of water between the Pacific and Indian oceans in the Indonesian seas , 1996, Nature.

[43]  R. Lu,et al.  The 1997/98 El Niño: A test for climate models , 2004 .

[44]  Mitsuo Yokokawa,et al.  The Earth Simulator system , 2003 .

[45]  M. Spall,et al.  Specification of eddy transfer coefficients in coarse resolution ocean circulation models , 1997 .

[46]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[47]  K. Shine Radiative Forcing of Climate Change , 2000 .

[48]  B. Goswami,et al.  A dipole mode in the tropical Indian Ocean , 1999, Nature.

[49]  K. Bryan A Numerical Method for the Study of the Circulation of the World Ocean , 1997 .

[50]  W. Lipscomb Remapping the thickness distribution in sea ice models , 2001 .

[51]  Harry L. Bryden,et al.  Direct estimates and mechanisms of ocean heat transport , 1982 .

[52]  H. Bryden,et al.  Direct Observations of the Ekman Balance at 10°N in the Pacific , 1994 .

[53]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[54]  J. Turner,et al.  A one‐dimensional model of the seasonal thermocline II. The general theory and its consequences , 1967 .

[55]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[56]  M. Cane,et al.  A Model El Niñ–Southern Oscillation , 1987 .

[57]  A. Weaver,et al.  Multiple Equilibria of an Asymmetric Two-Basin Ocean Model , 1994 .

[58]  Ronald J. Stouffer,et al.  A method for obtaining pre-twentieth century initial conditions for use in climate change studies , 2004 .

[59]  B. Wielicki,et al.  Cloud structure anomalies over the tropical Pacific during the 1997/98 El Niño , 2001 .

[60]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[61]  Robert P. Garrett,et al.  Sea ice thickness distribution in the Arctic Ocean , 1987 .

[62]  S. Klein,et al.  The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations , 2004 .

[63]  B. Hoskins,et al.  The Relationship between Convection and Sea Surface Temperature on Intraseasonal Timescales , 2000 .

[64]  I. Musat,et al.  On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles , 2006 .

[65]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[66]  John F. B. Mitchell,et al.  Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios , 2003 .

[67]  James A. Carton,et al.  A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950-95. Part II: Results , 2000 .

[68]  S. Bony,et al.  Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models , 2001 .

[69]  R. Dickson,et al.  The production of North Atlantic Deep Water: Sources, rates, and pathways , 1994 .

[70]  T. Yamagata,et al.  Coupled Ocean‐Atmosphere Variability in the Tropical Indian Ocean , 2013 .

[71]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[72]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .